# TODO: Gradio session / multi-user thread # Reference: # # https://vimeo.com/990334325/56b552bc7a # https://platform.openai.com/playground/assistants # https://cookbook.openai.com/examples/assistants_api_overview_python # https://platform.openai.com/docs/api-reference/assistants/createAssistant # https://platform.openai.com/docs/assistants/tools import gradio as gr #import pandas as pd #import yfinance as yf import json, openai, os, time from assistants import ( openai_client, assistant, thread, create_assistant, load_assistant, create_thread, create_message, create_run, wait_on_run, get_run_steps, execute_tool_calls, get_messages, extract_content_values, ) #from datetime import date #from openai import OpenAI #from tavily import TavilyClient #from typing import List #from utils import function_to_schema, show_json def chat(message, history): if not message: raise gr.Error("Message is required.") global assistant, thread if assistant == None: #assistant = create_assistant(openai_client) # on first run, create assistant and update assistant_id # see https://platform.openai.com/playground/assistants assistant = load_assistant(openai_client) # on subsequent runs, load assistant if thread == None or len(history) == 0: thread = create_thread(openai_client) create_message(openai_client, thread, message) run = create_run(openai_client, assistant, thread) run = wait_on_run(openai_client, thread, run) run_steps = get_run_steps(openai_client, thread, run) ### TODO tool_call_ids, tool_call_results = execute_tool_calls(run_steps) if len(tool_call_ids) > 0: # https://platform.openai.com/docs/api-reference/runs/submitToolOutputs tool_output = {} try: tool_output = { "tool_call_id": tool_call_ids[0], "output": tool_call_results[0].to_json() } except AttributeError: tool_output = { "tool_call_id": tool_call_ids[0], "output": tool_call_results[0] } run = openai_client.beta.threads.runs.submit_tool_outputs( thread_id=thread.id, run_id=run.id, tool_outputs=[tool_output] ) run = wait_on_run(openai_client, thread, run) run_steps = get_run_steps(openai_client, thread, run) ### tool_call_ids, tool_call_results = execute_tool_calls(run_steps) if len(tool_call_ids) > 1: # https://platform.openai.com/docs/api-reference/runs/submitToolOutputs tool_output = {} try: tool_output = { "tool_call_id": tool_call_ids[1], "output": tool_call_results[1].to_json() } except AttributeError: tool_output = { "tool_call_id": tool_call_ids[1], "output": tool_call_results[1] } run = openai_client.beta.threads.runs.submit_tool_outputs( thread_id=thread.id, run_id=run.id, tool_outputs=[tool_output] ) run = wait_on_run(openai_client, thread, run) run_steps = get_run_steps(openai_client, thread, run) ### messages = get_messages(openai_client, thread) text_values, image_values = extract_content_values(messages) download_link = "" if len(image_values) > 0: download_link = f"
Download: https://platform.openai.com/storage/files/{image_values[0]}
" return f"{'