# TODO: # # 1. Gradio session / multi-user thread # 2. Function calling - https://platform.openai.com/docs/assistants/tools/function-calling # - Date tool # - Web scraping tool (Tavily API) # Reference: # # https://vimeo.com/990334325/56b552bc7a # https://platform.openai.com/playground/assistants # https://cookbook.openai.com/examples/assistants_api_overview_python # https://platform.openai.com/docs/api-reference/assistants/createAssistant # https://platform.openai.com/docs/assistants/tools import gradio as gr import openai, os, time from datetime import datetime from openai import OpenAI from utils import function_to_schema, show_json client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) assistant, thread = None, None def get_current_date(): """Use to get the current date.""" print(f"Current date: {datetime.now()}") return datetime.now() def create_assistant(client): assistant = client.beta.assistants.create( name="Python Code Generator", instructions=( "You are a Python programming language expert that " "generates Pylint-compliant code and explains it. " "Only execute code when explicitly asked to." ), model="gpt-4o", tools=[ {"type": "code_interpreter"}, {"type": "function", "function": function_to_schema(get_current_date)}, ], ) show_json("assistant", assistant) return assistant def load_assistant(client): ASSISTANT_ID = "asst_TpZgBd2QYaxUxCwUy8J9m3Bq" assistant = client.beta.assistants.retrieve(ASSISTANT_ID) show_json("assistant", assistant) return assistant def create_thread(client): thread = client.beta.threads.create() show_json("thread", thread) return thread def create_message(client, thread, msg): message = client.beta.threads.messages.create( role="user", thread_id=thread.id, content=msg, ) show_json("message", message) return message def create_run(client, assistant, thread): run = client.beta.threads.runs.create( assistant_id=assistant.id, thread_id=thread.id, ) show_json("run", run) return run def wait_on_run(client, thread, run): while run.status == "queued" or run.status == "in_progress": run = client.beta.threads.runs.retrieve( thread_id=thread.id, run_id=run.id, ) time.sleep(0.25) show_json("run", run) return run def get_run_steps(client, thread, run): run_steps = client.beta.threads.runs.steps.list( thread_id=thread.id, run_id=run.id, order="asc", ) show_json("run_steps", run_steps) return run_steps def get_run_step_details(run_steps): run_step_details = [] for step in run_steps.data: step_details = step.step_details run_step_details.append(step_details) show_json("step_details", step_details) return run_step_details def get_messages(client, thread): messages = client.beta.threads.messages.list( thread_id=thread.id ) show_json("messages", messages) return messages def extract_content_values(data): text_values, image_values = [], [] for item in data.data: for content in item.content: if content.type == "text": text_value = content.text.value text_values.append(text_value) if content.type == "image_file": image_value = content.image_file.file_id image_values.append(image_value) return text_values, image_values def chat(message, history): if not message: raise gr.Error("Message is required.") global client, assistant, thread if assistant == None: assistant = load_assistant(client) if thread == None or len(history) == 0: thread = create_thread(client) create_message(client, thread, message) run = create_run(client, assistant, thread) run = wait_on_run(client, thread, run) run_steps = get_run_steps(client, thread, run) get_run_step_details(run_steps) messages = get_messages(client, thread) text_values, image_values = extract_content_values(messages) download_link = "" if len(image_values) > 0: download_link = f"

Download: https://platform.openai.com/storage/files/{image_values[0]}

" return f"{text_values[0]}{download_link}" gr.ChatInterface( fn=chat, chatbot=gr.Chatbot(height=350), textbox=gr.Textbox(placeholder="Ask anything", container=False, scale=7), title="Python Code Generator", description="The assistant can generate, explain, fix, optimize, document, and test code. It can also execute code.", clear_btn="Clear", retry_btn=None, undo_btn=None, examples=[ ["Generate: Python code to fine-tune model meta-llama/Meta-Llama-3.1-8B on dataset gretelai/synthetic_text_to_sql using QLoRA"], ["Explain: r\"^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\\W]).{8,}$\""], ["Fix: x = [5, 2, 1, 3, 4]; print(x.sort())"], ["Optimize: x = []; for i in range(0, 10000): x.append(i)"], ["Execute: First 25 Fibbonaci numbers"], ["Execute using mock data: Chart showing stock gain YTD for NVDA, MSFT, AAPL, and GOOG, x-axis is 'Day' and y-axis is 'YTD Gain %'"] ], cache_examples=False, ).launch()