import pandas as pd import yfinance as yf import json, openai, os, time from datetime import date from openai import OpenAI from tavily import TavilyClient from typing import List from utils import function_to_schema, show_json openai_client, assistant, thread = None, None, None tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API_KEY")) assistant_id = "asst_DbCpNsJ0vHSSdl6ePlkKZ8wG" def today_tool() -> str: """Returns today's date. Use this function for any questions related to knowing today's date. There should be no input. This function always returns today's date.""" return str(date.today()) def yf_download_tool(tickers: List[str], start_date: date, end_date: date) -> pd.DataFrame: """Returns historical stock data for a list of given tickers from start date to end date using the yfinance library download function. Use this function for any questions related to getting historical stock data. The input should be the tickers as a List of strings, a start date, and an end date. This function always returns a pandas DataFrame.""" return yf.download(tickers, start=start_date, end=end_date) def tavily_search_tool(query: str) -> str: """Searches the web for a given query and returns an answer, " ready for use as context in a RAG application, using the Tavily API. Use this function for any questions requiring knowledge not available to the model. The input should be the query string. This function always returns an answer string.""" return tavily_client.get_search_context(query=query, max_results=5) tools = { "today_tool": today_tool, "yf_download_tool": yf_download_tool, "tavily_search_tool": tavily_search_tool, } def create_assistant(): assistant = openai_client.beta.assistants.create( name="Python Coding Assistant", instructions=( "You are a Python programming language expert that " "generates Pylint-compliant code and explains it. " "Execute code when explicitly asked to." ), model="gpt-4o", tools=[ {"type": "code_interpreter"}, {"type": "function", "function": function_to_schema(today_tool)}, {"type": "function", "function": function_to_schema(yf_download_tool)}, {"type": "function", "function": function_to_schema(tavily_search_tool)}, ], ) show_json("assistant", assistant) return assistant def load_assistant(): assistant = openai_client.beta.assistants.retrieve(assistant_id) show_json("assistant", assistant) return assistant def create_thread(): thread = openai_client.beta.threads.create() show_json("thread", thread) return thread def create_message(thread, msg): message = openai_client.beta.threads.messages.create( role="user", thread_id=thread.id, content=msg, ) show_json("message", message) return message def create_run(assistant, thread): run = openai_client.beta.threads.runs.create( assistant_id=assistant.id, thread_id=thread.id, parallel_tool_calls=False, ) show_json("run", run) return run def wait_on_run(thread, run): while run.status == "queued" or run.status == "in_progress": run = openai_client.beta.threads.runs.retrieve( thread_id=thread.id, run_id=run.id, ) time.sleep(1) show_json("run", run) if hasattr(run, "last_error") and run.last_error: raise gr.Error(run.last_error) return run def get_run_steps(thread, run): run_steps = openai_client.beta.threads.runs.steps.list( thread_id=thread.id, run_id=run.id, order="asc", ) show_json("run_steps", run_steps) return run_steps def execute_tool_call(tool_call): name = tool_call.function.name args = {} if len(tool_call.function.arguments) > 10: args_json = "" try: args_json = tool_call.function.arguments args = json.loads(args_json) except json.JSONDecodeError as e: print(f"Error parsing function name '{name}' function args '{args_json}': {e}") return tools[name](**args) def execute_tool_calls(run_steps): run_step_details = [] tool_call_ids = [] tool_call_results = [] for step in run_steps.data: step_details = step.step_details run_step_details.append(step_details) show_json("step_details", step_details) if hasattr(step_details, "tool_calls"): for tool_call in step_details.tool_calls: show_json("tool_call", tool_call) if hasattr(tool_call, "function"): tool_call_ids.append(tool_call.id) tool_call_results.append(execute_tool_call(tool_call)) return tool_call_ids, tool_call_results def recurse_execute_tool_calls(thread, run, run_steps, iteration): tool_call_ids, tool_call_results = execute_tool_calls(run_steps) if len(tool_call_ids) > iteration: tool_output = {} try: tool_output = { "tool_call_id": tool_call_ids[iteration], "output": tool_call_results[iteration].to_json() } except AttributeError: tool_output = { "tool_call_id": tool_call_ids[iteration], "output": tool_call_results[iteration] } # https://platform.openai.com/docs/api-reference/runs/submitToolOutputs run = openai_client.beta.threads.runs.submit_tool_outputs( thread_id=thread.id, run_id=run.id, tool_outputs=[tool_output] ) run = wait_on_run(thread, run) run_steps = get_run_steps(thread, run) recurse_execute_tool_calls(thread, run, run_steps, iteration + 1) else: return def get_messages(thread): messages = openai_client.beta.threads.messages.list( thread_id=thread.id ) show_json("messages", messages) return messages def extract_content_values(data): text_values, image_values = [], [] for item in data.data: for content in item.content: # TODO: Handle other file types if content.type == "text": text_value = content.text.value text_values.append(text_value) if content.type == "image_file": image_value = content.image_file.file_id image_values.append(image_value) return text_values, image_values