Spaces:
Running
Running
# Matlplotlib chart | |
# Multimodal input | |
# File search | |
# Function: Tavily API | |
# https://platform.openai.com/playground/assistants | |
# https://platform.openai.com/docs/api-reference/assistants/createAssistant | |
# https://platform.openai.com/docs/assistants/tools/code-interpreter | |
# https://cookbook.openai.com/examples/assistants_api_overview_python | |
import gradio as gr | |
import datetime, openai, os, time | |
from openai import OpenAI | |
from utils import show_json | |
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) | |
assistant, thread = None, None | |
def create_assistant(client): | |
assistant = client.beta.assistants.create( | |
name="Python Code Generator", | |
instructions=( | |
"You are a Python programming language expert that " | |
"generates Pylint-compliant code and explains it. " | |
"Only execute code when explicitly asked to." | |
), | |
model="gpt-4o", | |
tools=[ | |
{"type": "code_interpreter"}, | |
{"type": "retrieval"}, | |
], | |
) | |
show_json("assistant", assistant) | |
return assistant | |
def load_assistant(client): | |
assistant = client.beta.assistants.retrieve("asst_rA2o181bBD633oWoaiImdzwG") | |
show_json("assistant", assistant) | |
return assistant | |
def create_thread(client): | |
thread = client.beta.threads.create() | |
show_json("thread", thread) | |
return thread | |
def create_message(client, thread, msg): | |
message = client.beta.threads.messages.create( | |
role="user", | |
thread_id=thread.id, | |
content=msg, | |
) | |
show_json("message", message) | |
return message | |
def create_run(client, assistant, thread): | |
run = client.beta.threads.runs.create( | |
assistant_id=assistant.id, | |
thread_id=thread.id, | |
) | |
show_json("run", run) | |
return run | |
def wait_on_run(client, thread, run): | |
while run.status == "queued" or run.status == "in_progress": | |
run = client.beta.threads.runs.retrieve( | |
thread_id=thread.id, | |
run_id=run.id, | |
) | |
time.sleep(0.25) | |
show_json("run", run) | |
return run | |
def get_run_steps(client, thread, run): | |
run_steps = client.beta.threads.runs.steps.list( | |
thread_id=thread.id, | |
run_id=run.id, | |
order="asc", | |
) | |
show_json("run_steps", run_steps) | |
return run_steps | |
def get_run_step_details(run_steps): | |
for step in run_steps.data: | |
step_details = step.step_details | |
show_json("step_details", step_details) | |
def get_messages(client, thread): | |
messages = client.beta.threads.messages.list( | |
thread_id=thread.id | |
) | |
show_json("messages", messages) | |
return messages | |
def extract_content_values(data): | |
content_values = [] | |
for item in data.data: | |
for content in item.content: | |
if content.type == "text": | |
content_values.append(content.text.value) | |
return content_values | |
def chat(message, history): | |
if not message: | |
raise gr.Error("Message is required.") | |
global client, assistant, thread | |
if assistant == None: | |
assistant = create_assistant(client) | |
if thread == None or len(history) == 0: | |
thread = create_thread(client) | |
create_message(client, thread, message) | |
run = create_run(client, assistant, thread) | |
run = wait_on_run(client, thread, run) | |
run_steps = get_run_steps(client, thread, run) | |
get_run_step_details(run_steps) | |
messages = get_messages(client, thread) | |
content_values = extract_content_values(messages) | |
print("###") | |
print(content_values[0]) | |
print("###") | |
return content_values[0] | |
gr.ChatInterface( | |
fn=chat, | |
chatbot=gr.Chatbot(height=350), | |
textbox=gr.MultimodalTextbox(placeholder="Ask anything", container=False, scale=7), | |
title="Python Code Generator", | |
description="The assistant can generate code, explain, fix, optimize, document, test, and generally help with code. It can also execute code.", | |
examples=[ | |
[{"text": "Generate: NumPy/Pandas/Matplotlib & yfinance trading app", "files": []}], | |
[{"text": "Explain: r\"^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\\W]).{8,}$\"", "files": []}], | |
[{"text": "Fix: x = [5, 2, 1, 3, 4]; print(x.sort())", "files": []}], | |
[{"text": "Optimize: x = []; for i in range(0, 10000): x.append(i)", "files": []}], | |
[{"text": "Execute: First 25 Fibbonaci numbers", "files": []}], | |
[{"text": "Execute: Chart showing stock gain YTD for NVDA, MSFT, AAPL, and GOOG, x-axis is 'Day' and y-axis is 'YTD Gain %'", "files": []}], | |
], | |
cache_examples=True, | |
multimodal=True, | |
).launch() |