Spaces:
Running
Running
import gradio as gr | |
import openai, os, time | |
from openai import OpenAI | |
from utils import show_json | |
_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) | |
_assistant, _thread = None, None | |
def create_assistant(client): | |
assistant = client.beta.assistants.create( | |
name="Python Code Generator", | |
instructions="You are a Python programming language expert that generates Pylint-compliant code and explains it. Only execute code when explicitly asked to.", | |
model="gpt-4o", | |
tools=[{"type": "code_interpreter"}], | |
) | |
show_json("assistant", assistant) | |
return assistant | |
def create_thread(client): | |
thread = client.beta.threads.create() | |
show_json("thread", thread) | |
return thread | |
def create_message(client, thread, msg): | |
message = client.beta.threads.messages.create( | |
role="user", | |
thread_id=thread.id, | |
content=msg, | |
) | |
show_json("message", message) | |
return message | |
def create_run(client, assistant, thread): | |
run = client.beta.threads.runs.create( | |
assistant_id=assistant.id, | |
thread_id=thread.id, | |
) | |
show_json("run", run) | |
return run | |
def wait_on_run(client, thread, run): | |
while run.status == "queued" or run.status == "in_progress": | |
run = client.beta.threads.runs.retrieve( | |
thread_id=thread.id, | |
run_id=run.id, | |
) | |
time.sleep(0.25) | |
show_json("run", run) | |
return run | |
def list_run_steps(client, thread, run): | |
run_steps = client.beta.threads.runs.steps.list( | |
thread_id=thread.id, | |
run_id=run.id, | |
order="asc", | |
) | |
for step in run_steps.data: | |
step_details = step.step_details | |
show_json("step_details", step_details) | |
return run_steps | |
def list_messages(client, thread): | |
messages = client.beta.threads.messages.list( | |
thread_id=thread.id | |
) | |
show_json("messages", messages) | |
return messages | |
def extract_content_values(data): | |
content_values = [] | |
for item in data.data: | |
for content in item.content: | |
if content.type == "text": | |
content_values.append(content.text.value) | |
return content_values | |
def chat(message, history, openai_api_key): | |
global _client, _assistant, _thread | |
if _assistant == None: | |
_assistant = create_assistant(_client) | |
if _thread == None: | |
_thread = create_thread(_client) | |
create_message(_client, _thread, message) | |
run = create_run(_client, _assistant, _thread) | |
run = wait_on_run(_client, _thread, run) | |
list_run_steps(_client, _thread, run) | |
messages = list_messages(_client, _thread) | |
content_values = extract_content_values(messages) | |
return content_values[0] | |
def vote(data: gr.LikeData): | |
print("voted") | |
gr.ChatInterface( | |
fn=chat, | |
chatbot=gr.Chatbot(height=300), | |
textbox=gr.Textbox(placeholder="Ask anything", container=False, scale=7), | |
title="Python Code Generator", | |
description="Generate, explain, fix, optimize, document, test, help, ... Can execute code when asked to.", | |
clear_btn="Clear", | |
retry_btn="Retry", | |
undo_btn="Undo", | |
examples=[ | |
["Generate: NumPy/Pandas/Matplotlib & yfinance trading app", "sk-<BringYourOwn>"], | |
["Explain: r'^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\\W]).{8,}$'", "sk-<BringYourOwn>"], | |
["Fix: x = [5, 2, 1, 3, 4]; print(x.sort())", "sk-<BringYourOwn>"], | |
["Optimize: x = []; for i in range(0, 10000): x.append(i)", "sk-<BringYourOwn>"], | |
["Execute: Code to generate the first 20 fibbonaci numbers", "sk-<BringYourOwn>"], | |
], | |
cache_examples=False, | |
additional_inputs=[ | |
gr.Textbox("sk-", label="OpenAI API Key", type = "password"), | |
], | |
).launch() |