bstraehle's picture
Rename app.py to app2.py
f31da6e verified
raw
history blame
9.44 kB
import gradio as gr
import json, openai, os, time
from openai import OpenAI
from utils import function_to_schema, show_json
# Tools
triage_agent, sales_agent, issues_repairs_agent = None, None, None
triage_thread, sales_thread, issues_repairs_thread = None, None, None
def transfer_to_triage_agent():
"""Call this if the user brings up a topic outside of your purview,
including escalating to human."""
print("\n===> transfer_to_triage_agent\n")
global triage_agent, triage_thread
set_current_agent(triage_agent)
set_current_thread(triage_thread)
return "transfer_to_triage_agent"
def transfer_to_sales_agent():
"""Use for anything sales or buying related."""
print("\n===> transfer_to_sales_agent\n")
global sales_agent, sales_thread
set_current_agent(sales_agent)
set_current_thread(sales_thread)
return "transfer_to_sales_agent"
def transfer_to_issues_repairs_agent():
"""Use for issues, repairs, or refunds."""
print("\n=> transfer_to_issues_repairs_agent\n")
global issues_repairs_agent, issues_repairs_thread
set_current_agent(issues_repairs_agent)
set_current_thread(issues_repairs_thread)
return "transfer_to_issues_repairs_agent"
#
def escalate_to_human(summary):
"""Only call this if explicitly asked to."""
print(f"=> escalate_to_human: summary: {summary}")
#exit()
return "escalate_to_human"
#
def execute_order(product, price: int):
"""Price should be in USD."""
print("\n\n=== Order Summary ===")
print(f"Product: {product}")
print(f"Price: ${price}")
print("=================\n")
confirm = input("Confirm order? y/n: ").strip().lower()
if confirm == "y":
print("Order execution successful!")
return "Success"
else:
print(color("Order cancelled!", "red"))
return "User cancelled order."
def look_up_item(search_query):
"""Use to find item ID.
Search query can be a description or keywords."""
item_id = "item_13261293"
print("Found item:", item_id)
return item_id
def execute_refund(item_id, reason="not provided"):
print("\n\n=== Refund Summary ===")
print(f"Item ID: {item_id}")
print(f"Reason: {reason}")
print("=================\n")
print("Refund execution successful!")
return "Success"
#
tools = {
"transfer_to_triage_agent": transfer_to_triage_agent,
"transfer_to_sales_agent": transfer_to_sales_agent,
"transfer_to_issues_repairs_agent": transfer_to_issues_repairs_agent,
"escalate_to_human": escalate_to_human,
"execute_order": execute_order,
"look_up_item": look_up_item,
"execute_refund": execute_refund,
}
# Agents
MODEL = "gpt-4o-mini"
def create_triage_agent(client):
return client.beta.assistants.create(
name="Triage Agent",
instructions=(
"You are a customer service bot for ACME Inc. "
"Introduce yourself. Always be very brief. "
"Gather information to direct the customer to the right department. "
"But make your questions subtle and natural."
),
model=MODEL,
tools=[{"type": "function", "function": function_to_schema(transfer_to_sales_agent)},
{"type": "function", "function": function_to_schema(transfer_to_issues_repairs_agent)},
{"type": "function", "function": function_to_schema(escalate_to_human)}],
)
def create_sales_agent(client):
return client.beta.assistants.create(
name="Sales Agent",
instructions=(
"You are a sales agent for ACME Inc. "
"Always answer in a sentence or less. "
"Follow the following routine with the user: "
"1. Ask them about any problems in their life related to catching roadrunners.\n"
"2. Casually mention one of ACME's crazy made-up products can help.\n"
" - Don't mention price.\n"
"3. Once the user is bought in, drop a ridiculous price.\n"
"4. Only after everything, and if the user says yes, "
"tell them a crazy caveat and execute their order.\n"
""
),
model=MODEL,
tools=[{"type": "function", "function": function_to_schema(execute_order)},
{"type": "function", "function": function_to_schema(transfer_to_triage_agent)}],
)
def create_issues_repairs_agent(client):
return client.beta.assistants.create(
name="Issues and Repairs Agent",
instructions=(
"You are a customer support agent for ACME Inc. "
"Always answer in a sentence or less. "
"Follow the following routine with the user: "
"1. First, ask probing questions and understand the user's problem deeper.\n"
" - unless the user has already provided a reason.\n"
"2. Propose a fix (make one up).\n"
"3. ONLY if not satesfied, offer a refund.\n"
"4. If accepted, search for the ID and then execute refund."
""
),
model=MODEL,
tools=[{"type": "function", "function": function_to_schema(look_up_item)},
{"type": "function", "function": function_to_schema(execute_refund)},
{"type": "function", "function": function_to_schema(transfer_to_triage_agent)}],
)
#
def create_thread(client):
thread = client.beta.threads.create()
#show_json("thread", thread)
return thread
def create_message(client, thread, msg):
message = client.beta.threads.messages.create(
role="user",
thread_id=thread.id,
content=msg,
)
#show_json("message", message)
return message
def create_run(client, assistant, thread):
run = client.beta.threads.runs.create(
assistant_id=assistant.id,
thread_id=thread.id,
)
#show_json("run", run)
return run
def wait_on_run(client, thread, run):
while run.status == "queued" or run.status == "in_progress":
run = client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id,
)
time.sleep(0.25)
#show_json("run", run)
return run
def list_steps(client, thread, run):
steps = client.beta.threads.runs.steps.list(
thread_id=thread.id,
run_id=run.id,
order="asc",
)
show_json("steps", steps)
return steps
def execute_tool_call(tool_call):
name = tool_call.function.name
args = json.loads(tool_call.function.arguments)
global tools
return tools[name](**args)
def execute_tool_calls(steps):
result = ""
for step in steps.data:
step_details = step.step_details
show_json("step_details", step_details)
if hasattr(step_details, "tool_calls"):
for tool_call in step_details.tool_calls:
result = execute_tool_call(tool_call)
show_json("tool_call", tool_call)
return result
def list_messages(client, thread):
messages = client.beta.threads.messages.list(
thread_id=thread.id
)
show_json("messages", messages)
return messages
def extract_content_values(data):
content_values = []
for item in data.data:
for content in item.content:
if content.type == "text":
content_values.append(content.text.value)
return content_values
#
current_agent, current_thread = None, None
def set_current_agent(agent):
global current_agent
current_agent = agent
show_json("Current Agent", current_agent)
def set_current_thread(thread):
global current_thread
current_thread = thread
show_json("Current Thread", current_thread)
def get_current_agent():
global current_agent
show_json("Current Agent", current_agent)
return current_agent
def get_current_thread():
global current_thread
show_json("Current Thread", current_thread)
return current_thread
#
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
triage_agent = create_triage_agent(client)
sales_agent = create_sales_agent(client)
issues_repairs_agent = create_issues_repairs_agent(client)
set_current_agent(triage_agent)
triage_thread = create_thread(client)
sales_thread = create_thread(client)
issues_repairs_thread = create_thread(client)
set_current_thread(triage_thread)
def chat(message, history, openai_api_key):
global client
assistant = get_current_agent()
thread = get_current_thread()
create_message(client, thread, message)
run = create_run(client, assistant, thread)
run = wait_on_run(client, thread, run)
steps = list_steps(client, thread, run)
results = execute_tool_calls(steps)
###
#print("\n\n\n[" + results + "]\n\n\n")
#if len(results) > 0 :
# create_message(client, thread, results[0])
# run = create_run(client, assistant, thread)
# run = wait_on_run(client, thread, run)
###
messages = list_messages(client, thread)
content_values = extract_content_values(messages)
return content_values[0]
gr.ChatInterface(
chat,
chatbot=gr.Chatbot(),
textbox=gr.Textbox(container=False, scale=7),
title="Multi-Agent Orchestration",
description="Demo using hand-off pattern: triage agent, sales agent, and issues & repairs agent",
clear_btn=None,
retry_btn=None,
undo_btn=None,
).launch()