bstraehle's picture
Update app.py
a867d70 verified
raw
history blame
3.73 kB
import gradio as gr
import json, openai, os, time
from agents import create_triage_agent, create_sales_agent, create_issues_repairs_agent
from openai import OpenAI
_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
_assistant, _thread = None, None
###
triage_agent = create_triage_agent(_client)
show_json("triage_agent", triage_agent)
sales_agent = create_sales_agent(_client)
show_json("sales_agent", sales_agent)
issues_repairs_agent = create_issues_repairs_agent(_client)
show_json("issues_repairs_agent", issues_repairs_agent)
###
def create_assistant(client):
assistant = client.beta.assistants.create(
name="Math Tutor",
instructions="You are a personal math tutor. Answer questions briefly, in a sentence or less.",
model="gpt-4-1106-preview",
tools=[{"type": "code_interpreter"}],
)
show_json("assistant", assistant)
return assistant
def create_thread(client):
thread = client.beta.threads.create()
show_json("thread", thread)
return thread
def create_message(client, thread, msg):
message = client.beta.threads.messages.create(
role="user",
thread_id=thread.id,
content=msg,
)
show_json("message", message)
return message
def create_run(client, assistant, thread):
run = client.beta.threads.runs.create(
assistant_id=assistant.id,
thread_id=thread.id,
)
show_json("run", run)
return run
def wait_on_run(client, thread, run):
while run.status == "queued" or run.status == "in_progress":
run = client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id,
)
time.sleep(0.25)
show_json("run", run)
return run
def list_run_steps(client, thread, run):
run_steps = client.beta.threads.runs.steps.list(
thread_id=thread.id,
run_id=run.id,
order="asc",
)
for step in run_steps.data:
step_details = step.step_details
#print(json.dumps(show_json("step_details", step_details), indent=4))
show_json("step_details", step_details)
return run_steps
def list_messages(client, thread):
messages = client.beta.threads.messages.list(
thread_id=thread.id
)
show_json("messages", messages)
return messages
def extract_content_values(data):
content_values = []
for item in data.data:
for content in item.content:
if content.type == 'text':
content_values.append(content.text.value)
return content_values
def show_json(str, obj):
print(f"=> {str}\n{json.loads(obj.model_dump_json())}")
def chat(message, history, openai_api_key):
global _client, _assistant, _thread
if _assistant == None:
_assistant = create_assistant(_client)
if _thread == None:
_thread = create_thread(_client)
create_message(_client, _thread, message)
# async
run = create_run(_client, _assistant, _thread)
run = wait_on_run(_client, _thread, run)
list_run_steps(_client, _thread, run)
messages = list_messages(_client, _thread)
return extract_content_values(messages)[0]
gr.ChatInterface(
chat,
chatbot=gr.Chatbot(height=300),
textbox=gr.Textbox(placeholder="Question", container=False, scale=7),
title="Multi-Agent Demo",
description="Triage agent, Sales agent, and Issues & Repairs agent",
retry_btn=None,
undo_btn=None,
clear_btn="Clear",
examples=[["Generate the first 10 Fibbonaci numbers with code.", "sk-<BringYourOwn>"]],
cache_examples=False,
additional_inputs=[
gr.Textbox("sk-", label="OpenAI API Key", type = "password"),
],
).launch()