Spaces:
Running
Running
import gradio as gr | |
import openai, os, time | |
from agents import create_triage_agent, create_sales_agent, create_issues_repairs_agent | |
from openai import OpenAI | |
from utils import show_json | |
#def create_assistant(client): | |
# assistant = client.beta.assistants.create( | |
# name="Math Tutor", | |
# instructions="You are a personal math tutor. Answer questions briefly, in a sentence or less.", | |
# model="gpt-4-1106-preview", | |
# tools=[{"type": "code_interpreter"}], | |
# ) | |
# show_json("assistant", assistant) | |
# return assistant | |
def create_thread(client): | |
thread = client.beta.threads.create() | |
show_json("thread", thread) | |
return thread | |
def create_message(client, thread, msg): | |
message = client.beta.threads.messages.create( | |
role="user", | |
thread_id=thread.id, | |
content=msg, | |
) | |
show_json("message", message) | |
return message | |
def create_run(client, assistant, thread): | |
run = client.beta.threads.runs.create( | |
assistant_id=assistant.id, | |
thread_id=thread.id, | |
) | |
show_json("run", run) | |
return run | |
def wait_on_run(client, thread, run): | |
while run.status == "queued" or run.status == "in_progress": | |
run = client.beta.threads.runs.retrieve( | |
thread_id=thread.id, | |
run_id=run.id, | |
) | |
time.sleep(0.25) | |
show_json("run", run) | |
return run | |
def list_run_steps(client, thread, run): | |
run_steps = client.beta.threads.runs.steps.list( | |
thread_id=thread.id, | |
run_id=run.id, | |
order="asc", | |
) | |
for step in run_steps.data: | |
step_details = step.step_details | |
#print(json.dumps(show_json("step_details", step_details), indent=4)) | |
show_json("step_details", step_details) | |
return run_steps | |
def list_messages(client, thread): | |
messages = client.beta.threads.messages.list( | |
thread_id=thread.id | |
) | |
show_json("messages", messages) | |
return messages | |
def extract_content_values(data): | |
content_values = [] | |
for item in data.data: | |
for content in item.content: | |
if content.type == 'text': | |
content_values.append(content.text.value) | |
return content_values | |
_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) | |
#_assistant, _thread = None, None | |
### | |
triage_agent = create_triage_agent(_client) | |
show_json("triage_agent", triage_agent) | |
sales_agent = create_sales_agent(_client) | |
show_json("sales_agent", sales_agent) | |
issues_repairs_agent = create_issues_repairs_agent(_client) | |
show_json("issues_repairs_agent", issues_repairs_agent) | |
triage_thread = create_thread(_client) | |
show_json("triage_thread", triage_thread) | |
sales_thread = create_thread(_client) | |
show_json("sales_thread", sales_thread) | |
issues_repairs_thread = create_thread(_client) | |
show_json("issues_repairs_thread", issues_repairs_thread) | |
_assistant = triage_agent | |
_thread = triage_thread | |
### | |
def chat(message, history, openai_api_key): | |
global _client, _assistant, _thread | |
#if _assistant == None: | |
# _assistant = create_assistant(_client) | |
#if _thread == None: | |
# _thread = create_thread(_client) | |
create_message(_client, _thread, message) | |
# async | |
run = create_run(_client, _assistant, _thread) | |
run = wait_on_run(_client, _thread, run) | |
list_run_steps(_client, _thread, run) | |
messages = list_messages(_client, _thread) | |
return extract_content_values(messages)[0] | |
gr.ChatInterface( | |
chat, | |
chatbot=gr.Chatbot(height=300), | |
textbox=gr.Textbox(placeholder="Question", container=False, scale=7), | |
title="Multi-Agent Orchestration", | |
description="Demo with three agents using hand-off pattern: triage agent, sales agent, and issues & repairs agent", | |
retry_btn=None, | |
undo_btn=None, | |
clear_btn="Clear", | |
#examples=[["Generate the first 10 Fibbonaci numbers with code.", "sk-<BringYourOwn>"]], | |
#cache_examples=False, | |
additional_inputs=[ | |
gr.Textbox("sk-", label="OpenAI API Key", type = "password"), | |
], | |
).launch() |