bstraehle's picture
Update app.py
18eed82 verified
raw
history blame
4.89 kB
# Reference:
#
# https://vimeo.com/990334325/56b552bc7a
# https://platform.openai.com/playground/assistants
# https://cookbook.openai.com/examples/assistants_api_overview_python
# https://platform.openai.com/docs/api-reference/assistants/createAssistant
# https://platform.openai.com/docs/assistants/tools
import gradio as gr
import json, os
from assistants import (
openai_client,
assistant,
thread,
create_assistant,
load_assistant,
create_thread,
create_message,
create_run,
wait_on_run,
get_run_steps,
execute_tool_calls,
get_messages,
extract_content_values,
)
def chat(message, history):
if not message:
raise gr.Error("Message is required.")
#raise gr.Error("Please clone and bring your own OpenAI and Tavily credentials.")
global assistant, thread
if assistant == None:
#assistant = create_assistant(openai_client) # on first run, create assistant and update assistant_id
# see https://platform.openai.com/playground/assistants
assistant = load_assistant(openai_client) # on subsequent runs, load assistant
# TODO: Gradio session / multi-user thread
if thread == None or len(history) == 0:
thread = create_thread(openai_client)
create_message(openai_client, thread, message)
run = create_run(openai_client, assistant, thread)
run = wait_on_run(openai_client, thread, run)
run_steps = get_run_steps(openai_client, thread, run)
### TODO
tool_call_ids, tool_call_results = execute_tool_calls(run_steps)
if len(tool_call_ids) > 0:
# https://platform.openai.com/docs/api-reference/runs/submitToolOutputs
tool_output = {}
try:
tool_output = {
"tool_call_id": tool_call_ids[0],
"output": tool_call_results[0].to_json()
}
except AttributeError:
tool_output = {
"tool_call_id": tool_call_ids[0],
"output": tool_call_results[0]
}
run = openai_client.beta.threads.runs.submit_tool_outputs(
thread_id=thread.id,
run_id=run.id,
tool_outputs=[tool_output]
)
run = wait_on_run(openai_client, thread, run)
run_steps = get_run_steps(openai_client, thread, run)
###
tool_call_ids, tool_call_results = execute_tool_calls(run_steps)
if len(tool_call_ids) > 1:
# https://platform.openai.com/docs/api-reference/runs/submitToolOutputs
tool_output = {}
try:
tool_output = {
"tool_call_id": tool_call_ids[1],
"output": tool_call_results[1].to_json()
}
except AttributeError:
tool_output = {
"tool_call_id": tool_call_ids[1],
"output": tool_call_results[1]
}
run = openai_client.beta.threads.runs.submit_tool_outputs(
thread_id=thread.id,
run_id=run.id,
tool_outputs=[tool_output]
)
run = wait_on_run(openai_client, thread, run)
run_steps = get_run_steps(openai_client, thread, run)
###
messages = get_messages(openai_client, thread)
text_values, image_values = extract_content_values(messages)
download_link = ""
# TODO: Handle multiple images and other file types
if len(image_values) > 0:
download_link = f"<p>Download: https://platform.openai.com/storage/files/{image_values[0]}</p>"
return f"{'<hr>'.join(list(reversed(text_values))[1:])}{download_link}"
gr.ChatInterface(
fn=chat,
chatbot=gr.Chatbot(height=350),
textbox=gr.Textbox(placeholder="Ask anything", container=False, scale=7),
title="Python Coding Assistant",
description=os.environ.get("DESCRIPTION"),
clear_btn="Clear",
retry_btn=None,
undo_btn=None,
examples=[
["Generate: Code to fine-tune model meta-llama/Meta-Llama-3.1-8B on dataset gretelai/synthetic_text_to_sql using QLoRA"],
["Explain: r\"^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\\W]).{8,}$\""],
["Fix: x = [5, 2, 1, 3, 4]; print(x.sort())"],
["Optimize: x = []; for i in range(0, 10000): x.append(i)"],
["Execute: First 25 Fibbonaci numbers"],
["Execute with tools: Create a plot showing stock gain QTD for NVDA and AMD, x-axis is \"Day\" and y-axis is \"Gain %\""],
["Execute with tools: Get key announcements from the latest OpenAI Dev Day"]
],
cache_examples=False,
).launch()