File size: 2,925 Bytes
aa0eed8
12338d7
031211a
aa0eed8
12c2b66
 
 
ee66ad7
d06678c
12c2b66
d06678c
5295650
12c2b66
273f79a
12c2b66
5295650
bd96781
12c2b66
 
 
 
5295650
12c2b66
5295650
bd96781
 
453ee12
bd96781
453ee12
12c2b66
453ee12
d06678c
453ee12
 
12c2b66
24755bb
38dfd80
 
 
 
24755bb
3017744
719f157
12c2b66
 
 
7fd13ba
f612802
244f050
f612802
244f050
f612802
719f157
244f050
1ec4b78
422ed7b
273f79a
5bb778f
12c2b66
 
244f050
5f04474
 
 
06d9591
bd96781
06d9591
12c2b66
 
06d9591
 
5f04474
06cc452
bd96781
12c2b66
 
06d9591
 
bd96781
06d9591
5f04474
453ee12
bd96781
453ee12
5f04474
24755bb
12c2b66
aa0eed8
19797f3
 
 
976e692
8fae4d3
a985e86
19797f3
12338d7
976e692
19797f3
8fae4d3
19797f3
5d6c0c0
 
 
 
19797f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
import json, openai, os, time
from openai import OpenAI

_client = None
_assistant = None
_thread = None

def show_json(str, obj):
    print(f"===> {str}\n{json.loads(obj.model_dump_json())}")

def init_assistant():
    global _client, _assistant, _thread
    
    _client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
    
    _assistant = _client.beta.assistants.create(
        name="Math Tutor",
        instructions="You are a personal math tutor. Answer questions briefly, in a sentence or less.",
        model="gpt-4-1106-preview",
    )
    
    _thread = client.beta.threads.create()

def wait_on_run(run, thread):
    global _client
    while run.status == "queued" or run.status == "in_progress":
        run = _client.beta.threads.runs.retrieve(
            run_id=run.id,
            thread_id=thread.id,
        )
        time.sleep(0.25)
    return run

def extract_content_values(data):
    content_values = []
    for item in data.data:
        for content in item.content:
            if content.type == 'text':
                content_values.append(content.text.value)
    return content_values

def chat(message, history):
    global _client
    global _assistant
    global _thread     
       
    history_openai_format = []
    
    for human, assistant in history:
        history_openai_format.append({"role": "user", "content": human})
        history_openai_format.append({"role": "assistant", "content":assistant})

    history_openai_format.append({"role": "user", "content": message})

    if len(history_openai_format) == 1:
        init_assistant()
    
    show_json("assistant", _assistant)
    show_json("thread", _thread)
    
    #print("### history")
    #print(len(history_openai_format))
    #print(history_openai_format)
    
    message = _client.beta.threads.messages.create(
        role="user",
        thread_id=_thread.id,
        content=history_openai_format,
    )
    
    #show_json("message", message)
    
    run = _client.beta.threads.runs.create(
        assistant_id=_assistant.id,
        thread_id=_thread.id,
    )
    
    run = wait_on_run(run, thread)
    
    #show_json("run", run)

    messages = _client.beta.threads.messages.list(thread_id=_thread.id)
    
    #show_json("messages", messages)

    return extract_content_values(messages)[0]

gr.ChatInterface(
    chat,
    chatbot=gr.Chatbot(height=300),
    textbox=gr.Textbox(placeholder="Ask Math Tutor any question", container=False, scale=7),
    title="Math Tutor",
    description="Question",
    theme="soft",
    examples=["I need to solve the equation `3x + 13 = 11`. Can you help me?"],
    cache_examples=False,
    retry_btn=None,
    undo_btn=None,
    clear_btn="Clear",
    #multimodal=True,
    #additional_inputs=[
    #    gr.Textbox("You are a personal math tutor. Answer questions briefly, in a sentence or less.", label="System Prompt"),
    #],
).launch()