Spaces:
Running
Running
File size: 5,258 Bytes
e2a0bec 7f928ad 2a3216d 5eae7c2 5fca11d 5eae7c2 0785e7b 5eae7c2 78a42dd 9064b67 5da2b8f 9064b67 5da2b8f 9064b67 5da2b8f 9064b67 2de5e80 0b33796 b184639 0b33796 59c15ca 7accea0 f498bf2 c77c850 7accea0 9064b67 2de5e80 9064b67 2de5e80 9064b67 fc30f91 d92a321 1c1978e 0784f56 fc30f91 9064b67 2de5e80 9064b67 2de5e80 9064b67 5fca11d 9064b67 421ee5d 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 fc30f91 9064b67 fc30f91 2de5e80 fc30f91 9064b67 fc30f91 9064b67 fc30f91 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 5befa9c 50ddfc1 5da2b8f e04bd50 5da2b8f 1c1978e 42c9326 e893203 d747e39 9064b67 5da2b8f 9064b67 5da2b8f 9064b67 fc30f91 e466f62 9064b67 fc30f91 9064b67 2de5e80 29028c0 2de5e80 1057e6a 5e0acb9 c40c2ce d92a321 c8be7d8 b184639 b384475 7fe3430 3f12f24 b184639 0f17b49 b184639 3f12f24 325a748 c8be7d8 952a213 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# Multimodal message https://platform.openai.com/docs/assistants/tools/code-interpreter/passing-files-to-code-interpreter
# File search https://platform.openai.com/docs/api-reference/messages/createMessage
# Matlplotlib chart
# Function: Tavily API
# Multi-user thread
# https://platform.openai.com/playground/assistants
# https://platform.openai.com/docs/api-reference/assistants/createAssistant
# https://platform.openai.com/docs/assistants/tools/code-interpreter
# https://cookbook.openai.com/examples/assistants_api_overview_python
import gradio as gr
import datetime, openai, os, time
from openai import OpenAI
from utils import show_json
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
assistant, thread = None, None
def create_assistant(client):
assistant = client.beta.assistants.create(
name="Python Code Generator",
instructions=(
"You are a Python programming language expert that "
"generates Pylint-compliant code and explains it. "
"Only execute code when explicitly asked to."
),
model="gpt-4o",
tools=[
{"type": "code_interpreter"},
{"type": "file_search"},
],
)
show_json("assistant", assistant)
return assistant
def load_assistant(client):
assistant = client.beta.assistants.retrieve("asst_kjO8BRHMREWBlY0LQ7WECfeD")
show_json("assistant", assistant)
return assistant
def create_thread(client):
thread = client.beta.threads.create()
show_json("thread", thread)
return thread
def create_message(client, thread, msg):
message = client.beta.threads.messages.create(
role="user",
thread_id=thread.id,
content=msg["text"],
)
show_json("message", message)
return message
def create_run(client, assistant, thread):
run = client.beta.threads.runs.create(
assistant_id=assistant.id,
thread_id=thread.id,
)
show_json("run", run)
return run
def wait_on_run(client, thread, run):
while run.status == "queued" or run.status == "in_progress":
run = client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id,
)
time.sleep(0.25)
show_json("run", run)
return run
def get_run_steps(client, thread, run):
run_steps = client.beta.threads.runs.steps.list(
thread_id=thread.id,
run_id=run.id,
order="asc",
)
show_json("run_steps", run_steps)
return run_steps
def get_run_step_details(run_steps):
for step in run_steps.data:
step_details = step.step_details
show_json("step_details", step_details)
def get_messages(client, thread):
messages = client.beta.threads.messages.list(
thread_id=thread.id
)
show_json("messages", messages)
return messages
def extract_content_values(data):
content_values = []
for item in data.data:
for content in item.content:
if content.type == "text":
content_values.append(content.text.value)
return content_values
def chat(message, history):
if not message:
raise gr.Error("Message is required.")
global client, assistant, thread
if assistant == None:
assistant = load_assistant(client)
if thread == None or len(history) == 0:
thread = create_thread(client)
create_message(client, thread, message)
run = create_run(client, assistant, thread)
run = wait_on_run(client, thread, run)
run_steps = get_run_steps(client, thread, run)
get_run_step_details(run_steps)
messages = get_messages(client, thread)
content_values = extract_content_values(messages)
print("###")
print(content_values[0])
print("###")
return content_values[0]
gr.ChatInterface(
fn=chat,
chatbot=gr.Chatbot(height=350),
textbox=gr.MultimodalTextbox(placeholder="Ask anything", container=False, scale=7),
title="Python Code Generator",
description="The assistant can generate code, explain, fix, optimize, document, test, and generally help with code. It can also execute code.",
clear_btn="Clear",
retry_btn=None,
undo_btn=None,
examples=[
[{"text": "Generate: Python code to fine-tune model meta-llama/Meta-Llama-3.1-8B on dataset gretelai/synthetic_text_to_sql using QLoRA", "files": []}],
[{"text": "Explain: "^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\\W]).{8,}$", "files": []}],
[{"text": "Fix: x = [5, 2, 1, 3, 4]; print(x.sort())", "files": []}],
[{"text": "Optimize: x = []; for i in range(0, 10000): x.append(i)", "files": []}],
[{"text": "Execute: First 25 Fibbonaci numbers", "files": []}],
[{"text": "Execute: Chart showing stock gain YTD for NVDA, MSFT, AAPL, and GOOG, x-axis is 'Day' and y-axis is 'YTD Gain %'", "files": []}],
],
cache_examples=False,
multimodal=True,
).launch() |