Spaces:
Running
Running
File size: 11,126 Bytes
aa7d8c4 5eae7c2 cfa124c 5eae7c2 cfa124c 78a42dd 9064b67 6a5793a a31fc9a 2a3fc7b 9064b67 16d66ad 9064b67 73899aa 6a5793a 2db705f 9064b67 73899aa 9064b67 872c848 10d6c27 5da2b8f 9064b67 f10c5f8 8b7dba2 a05ded5 16d66ad 2db705f f10c5f8 fd3fd7b 6a5793a 2e01617 6a5793a 2e01617 a31fc9a f10c5f8 73899aa 1d42f25 a31fc9a 73899aa 1d42f25 73899aa 70bf8f7 0b33796 10d6c27 59c15ca 7accea0 2db705f 16d66ad a31fc9a 73899aa 2db705f 9064b67 2de5e80 8153096 2de5e80 9064b67 fc30f91 73899aa 8153096 0784f56 fc30f91 73899aa 8153096 9064b67 73899aa 9064b67 39b970f 9064b67 2de5e80 8153096 9064b67 73899aa 9064b67 ee9f7f7 9064b67 2de5e80 8153096 9064b67 73899aa 9064b67 73899aa 9064b67 71987ad 2de5e80 8153096 2798fff 55021f1 b511565 9064b67 73899aa 9064b67 fc30f91 8153096 fc30f91 67b3b6b 049fb2a 47417a1 8b7dba2 1d42f25 67b3b6b 42e9172 7ddca6e 1012371 e7c3210 7ddca6e 9064b67 7ddca6e 5fcd91e fc30f91 67b3b6b 42e9172 0d6f576 e7c3210 67b3b6b e7c3210 7ddca6e 73899aa 9064b67 2de5e80 8153096 9064b67 6e6e7d5 9064b67 03869b0 2de5e80 9064b67 7ddca6e 29d58d0 7ddca6e 2de5e80 29d58d0 9064b67 e7c3210 c865dde e7c3210 5e2a083 6e17db2 e7c3210 c865dde e7c3210 5befa9c 50ddfc1 536b36d e04bd50 5da2b8f 872c848 73899aa 872c848 42c9326 e893203 73899aa 9064b67 73899aa 9064b67 73899aa 9064b67 73899aa 7bf3f3d 536b36d e7c3210 55b9732 c066ca5 a31fc9a 686539e 73899aa a31fc9a 686539e a31fc9a 73899aa 1b1181f 536b36d 3216382 c066ca5 536b36d 686539e 73899aa 536b36d 686539e 536b36d 73899aa 0150bec 9064b67 73899aa 9064b67 29d58d0 29028c0 7ddca6e a2df0ee 19bfc9a 2de5e80 21ce7f1 1057e6a 5e0acb9 c40c2ce d92a321 edd99e4 70bf8f7 10d6c27 aa7d8c4 536b36d 70bf8f7 4be439f 872c848 10d6c27 7fe3430 3f12f24 1292850 9247b68 1292850 da3afee 73899aa 70bf8f7 3f12f24 aa7d8c4 952a213 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# TODO: Gradio session / multi-user thread
# Reference:
#
# https://vimeo.com/990334325/56b552bc7a
# https://platform.openai.com/playground/assistants
# https://cookbook.openai.com/examples/assistants_api_overview_python
# https://platform.openai.com/docs/api-reference/assistants/createAssistant
# https://platform.openai.com/docs/assistants/tools
import gradio as gr
import pandas as pd
import yfinance as yf
import json, openai, os, time
from datetime import date
from openai import OpenAI
from tavily import TavilyClient
from typing import List
from utils import function_to_schema, show_json
openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API_KEY"))
assistant_id = "asst_DbCpNsJ0vHSSdl6ePlkKZ8wG"
assistant, thread = None, None
def today_tool() -> str:
"""Returns today's date. Use this function for any questions related to knowing today's date.
There should be no input. This function always returns today's date."""
return str(date.today())
def yf_download_tool(tickers: List[str], start_date: date, end_date: date) -> pd.DataFrame:
"""Returns historical stock data for a list of given tickers from start date to end date
using the yfinance library download function.
Use this function for any questions related to getting historical stock data.
The input should be the tickers as a List of strings, a start date, and an end date.
This function always returns a pandas DataFrame."""
return yf.download(tickers, start=start_date, end=end_date)
def tavily_search_tool(query: str) -> str:
"""Searches the web for a given query and returns an answer, "
ready for use as context in a RAG application, using the Tavily API.
Use this function for any questions requiring knowledge not available to the model.
The input should be the query string. This function always returns an answer string."""
return tavily_client.get_search_context(query=query, max_results=5)
tools = {
"today_tool": today_tool,
"yf_download_tool": yf_download_tool,
"tavily_search_tool": tavily_search_tool,
}
def create_assistant(openai_client):
assistant = openai_client.beta.assistants.create(
name="Python Coding Assistant",
instructions=(
"You are a Python programming language expert that "
"generates Pylint-compliant code and explains it. "
"Execute code when explicitly asked to."
),
model="gpt-4o",
tools=[
{"type": "code_interpreter"},
{"type": "function", "function": function_to_schema(today_tool)},
{"type": "function", "function": function_to_schema(yf_download_tool)},
{"type": "function", "function": function_to_schema(tavily_search_tool)},
],
)
show_json("assistant", assistant)
return assistant
def load_assistant(openai_client):
assistant = openai_client.beta.assistants.retrieve(assistant_id)
show_json("assistant", assistant)
return assistant
def create_thread(openai_client):
thread = openai_client.beta.threads.create()
show_json("thread", thread)
return thread
def create_message(openai_client, thread, msg):
message = openai_client.beta.threads.messages.create(
role="user",
thread_id=thread.id,
content=msg,
)
show_json("message", message)
return message
def create_run(openai_client, assistant, thread):
run = openai_client.beta.threads.runs.create(
assistant_id=assistant.id,
thread_id=thread.id,
parallel_tool_calls=False,
)
show_json("run", run)
return run
def wait_on_run(openai_client, thread, run):
while run.status == "queued" or run.status == "in_progress":
run = openai_client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id,
)
time.sleep(1)
show_json("run", run)
if hasattr(run, "last_error") and run.last_error:
raise gr.Error(run.last_error)
return run
def get_run_steps(openai_client, thread, run):
run_steps = openai_client.beta.threads.runs.steps.list(
thread_id=thread.id,
run_id=run.id,
order="asc",
)
show_json("run_steps", run_steps)
return run_steps
def execute_tool_call(tool_call):
name = tool_call.function.name
args = {}
if len(tool_call.function.arguments) > 10:
args = json.loads(tool_call.function.arguments)
return tools[name](**args)
def execute_tool_calls(run_steps):
run_step_details = []
tool_call_ids = []
tool_call_results = []
for step in run_steps.data:
step_details = step.step_details
run_step_details.append(step_details)
show_json("step_details", step_details)
if hasattr(step_details, "tool_calls"):
for tool_call in step_details.tool_calls:
show_json("tool_call", tool_call)
if hasattr(tool_call, "function"):
tool_call_ids.append(tool_call.id)
tool_call_results.append(execute_tool_call(tool_call))
return tool_call_ids, tool_call_results
def get_messages(openai_client, thread):
messages = openai_client.beta.threads.messages.list(
thread_id=thread.id
)
show_json("messages", messages)
return messages
def extract_content_values(data):
text_values, image_values = [], []
for item in data.data:
for content in item.content:
if content.type == "text":
text_value = content.text.value
text_values.append(text_value)
if content.type == "image_file":
image_value = content.image_file.file_id
image_values.append(image_value)
return text_values, image_values
###
def generate_tool_outputs(tool_call_ids, tool_call_results):
tool_outputs = []
for tool_call_id, tool_call_result in zip(tool_call_ids, tool_call_results):
tool_output = {}
try:
tool_output = {
"tool_call_id": tool_call_id,
"output": tool_call_result.to_json()
}
except AttributeError:
tool_output = {
"tool_call_id": tool_call_id,
"output": tool_call_result
}
tool_outputs.append(tool_output)
return tool_outputs
###
def chat(message, history):
if not message:
raise gr.Error("Message is required.")
global assistant, thread
if assistant == None:
#assistant = create_assistant(openai_client) # on first run, create assistant and update assistant_id
# see https://platform.openai.com/playground/assistants
assistant = load_assistant(openai_client) # on subsequent runs, load assistant
if thread == None or len(history) == 0:
thread = create_thread(openai_client)
create_message(openai_client, thread, message)
run = create_run(openai_client, assistant, thread)
run = wait_on_run(openai_client, thread, run)
run_steps = get_run_steps(openai_client, thread, run)
### TODO
tool_call_ids, tool_call_results = execute_tool_calls(run_steps)
if len(tool_call_ids) > 0:
# https://platform.openai.com/docs/api-reference/runs/submitToolOutputs
tool_output = {}
try:
tool_output = {
"tool_call_id": tool_call_ids[0],
"output": tool_call_results[0].to_json()
}
except AttributeError:
tool_output = {
"tool_call_id": tool_call_ids[0],
"output": tool_call_results[0]
}
run = openai_client.beta.threads.runs.submit_tool_outputs(
thread_id=thread.id,
run_id=run.id,
tool_outputs=[tool_output]
)
run = wait_on_run(openai_client, thread, run)
run_steps = get_run_steps(openai_client, thread, run)
###
tool_call_ids, tool_call_results = execute_tool_calls(run_steps)
if len(tool_call_ids) > 1:
# https://platform.openai.com/docs/api-reference/runs/submitToolOutputs
tool_output = {}
try:
tool_output = {
"tool_call_id": tool_call_ids[1],
"output": tool_call_results[1].to_json()
}
except AttributeError:
tool_output = {
"tool_call_id": tool_call_ids[1],
"output": tool_call_results[1]
}
run = openai_client.beta.threads.runs.submit_tool_outputs(
thread_id=thread.id,
run_id=run.id,
tool_outputs=[tool_output]
)
run = wait_on_run(openai_client, thread, run)
run_steps = get_run_steps(openai_client, thread, run)
###
messages = get_messages(openai_client, thread)
text_values, image_values = extract_content_values(messages)
download_link = ""
if len(image_values) > 0:
download_link = f"<p>Download: https://platform.openai.com/storage/files/{image_values[0]}</p>"
return f"{'<hr>'.join(list(reversed(text_values))[1:])}{download_link}"
gr.ChatInterface(
fn=chat,
chatbot=gr.Chatbot(height=350),
textbox=gr.Textbox(placeholder="Ask anything", container=False, scale=7),
title="Python Coding Assistant",
description=(
"The assistant can **generate, explain, fix, optimize,** and **document Python code, "
"create unit test cases,** and **answer general coding-related questions.** "
"It can also **execute code**. "
"The assistant has access to a <b>today tool</b> (get current date), to a "
"**yfinance download tool** (get stock data), and to a "
"**tavily search tool** (web search)."
),
clear_btn="Clear",
retry_btn=None,
undo_btn=None,
examples=[
["Generate: Python code to fine-tune model meta-llama/Meta-Llama-3.1-8B on dataset gretelai/synthetic_text_to_sql using QLoRA"],
["Explain: r\"^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\\W]).{8,}$\""],
["Fix: x = [5, 2, 1, 3, 4]; print(x.sort())"],
["Optimize: x = []; for i in range(0, 10000): x.append(i)"],
["Execute: First 25 Fibbonaci numbers"],
["Execute with tools: Create a plot showing stock gain QTD for NVDA and AMD, x-axis is \"Day\" and y-axis is \"Gain %\""],
["Execute with tools: Get key announcements from the latest OpenAI Dev Day"]
],
cache_examples=False,
).launch() |