File size: 1,991 Bytes
aa0eed8
b1972fa
031211a
aa0eed8
e186580
 
89fd850
7d51c10
 
 
89fd850
453ee12
 
 
 
 
 
 
 
 
24755bb
 
38dfd80
 
 
 
24755bb
 
e186580
7d155ee
 
 
 
 
031211a
7d155ee
06d9591
 
 
 
 
 
 
 
a985e86
06d9591
 
 
 
 
 
 
 
 
 
453ee12
 
06d9591
453ee12
 
 
 
 
24755bb
 
aa0eed8
19797f3
 
 
976e692
8fae4d3
a985e86
19797f3
976e692
 
19797f3
8fae4d3
19797f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import gradio as gr
import json, openai, os, time
from openai import OpenAI

client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

def show_json(obj):
    print("###")
    print(json.loads(obj.model_dump_json()))
    print("###")

def wait_on_run(run, thread):
    while run.status == "queued" or run.status == "in_progress":
        run = client.beta.threads.runs.retrieve(
            thread_id=thread.id,
            run_id=run.id,
        )
        time.sleep(0.5)
    return run

def extract_content_value(data):
    content_values = []
    for item in data.data:
        for content in item.content:
            if content.type == 'text':
                content_values.append(content.text.value)
    return content_values
    
def chat(message, history):    
    assistant = client.beta.assistants.create(
    name="Math Tutor",
    instructions="You are a personal math tutor. Answer questions briefly, in a sentence or less.",
    model="gpt-4-1106-preview",
    )
    
    show_json(assistant)

    thread = client.beta.threads.create()
    
    show_json(thread)

    message = client.beta.threads.messages.create(
        thread_id=thread.id,
        role="user",
        content=message,
    )
    
    show_json(message)

    run = client.beta.threads.runs.create(
        thread_id=thread.id,
        assistant_id=assistant.id,
    )
    
    show_json(run)

    run = wait_on_run(run, thread)
    
    show_json(run)

    messages = client.beta.threads.messages.list(thread_id=thread.id)
    
    show_json(messages)

    return extract_content_value(messages)[0]

gr.ChatInterface(
    chat,
    chatbot=gr.Chatbot(height=300),
    textbox=gr.Textbox(placeholder="Ask Math Tutor any question", container=False, scale=7),
    title="Math Tutor",
    description="Question",
    theme="soft",
    examples=["I need to solve the equation `3x + 12 = 14`. Can you help me?"],
    cache_examples=False,
    retry_btn=None,
    undo_btn=None,
    clear_btn="Clear",
).launch()