Spaces:
Running
Running
File size: 7,524 Bytes
2267bab 073d6c4 26f3de7 073d6c4 daf9947 ae32874 073d6c4 1a5cbf8 0200702 1a5cbf8 0200702 90be898 cebab9c 90be898 e2eb3ac 4a90510 073d6c4 4a90510 073d6c4 26f3de7 073d6c4 4a90510 073d6c4 26f3de7 073d6c4 3c9cecb 073d6c4 72a8028 f4634ef 073d6c4 4a90510 073d6c4 26f3de7 073d6c4 4a90510 073d6c4 26f3de7 073d6c4 4a90510 073d6c4 26f3de7 073d6c4 016eaa7 073d6c4 77388e2 073d6c4 09e6a76 39fe6d2 923cc49 073d6c4 9aa5953 39fe6d2 923cc49 6f8c5f7 073d6c4 923cc49 073d6c4 923cc49 073d6c4 1812acf 51df0df 9d6cba0 51df0df ed6bcf1 4a90510 51df0df 4a90510 9d6cba0 33f6bea 4a90510 26f3de7 4a90510 53b8d3a 4a90510 53b8d3a 4a90510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
import pandas as pd
import yfinance as yf
import json, openai, os, time
from datetime import date
from openai import OpenAI
from tavily import TavilyClient
from typing import List
from utils import function_to_schema, get_json
openai_client, assistant, thread = None, None, None
tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API_KEY"))
assistant_id = "asst_DbCpNsJ0vHSSdl6ePlkKZ8wG"
def today_tool() -> str:
"""Returns today's date. Use this function for any questions related to knowing today's date.
There should be no input. This function always returns today's date."""
return str(date.today())
def yf_download_tool(tickers: List[str], start_date: date, end_date: date) -> pd.DataFrame:
"""Returns historical stock data for a list of given tickers from start date to end date
using the yfinance library download function.
Use this function for any questions related to getting historical stock data.
The input should be the tickers as a List of strings, a start date, and an end date.
This function always returns a pandas DataFrame."""
return yf.download(tickers, start=start_date, end=end_date)
def tavily_search_tool(query: str) -> str:
"""Searches the web for a given query and returns an answer, "
ready for use as context in a RAG application, using the Tavily API.
Use this function for any questions requiring knowledge not available to the model.
The input should be the query string. This function always returns an answer string."""
return tavily_client.get_search_context(query=query, max_results=5)
tools = {
"today_tool": today_tool,
"yf_download_tool": yf_download_tool,
"tavily_search_tool": tavily_search_tool,
}
def set_openai_client():
global openai_client
openai_client = OpenAI()
def set_assistant(a):
global assistant
assistant = a
def get_assistant():
global assistant
return assistant
def set_thread(t):
global thread
thread = t
def get_thread():
global thread
return thread
def create_assistant():
assistant = openai_client.beta.assistants.create(
name="Python Coding Assistant",
instructions=(
"You are a Python programming language expert that "
"generates Pylint-compliant code and explains it. "
"Execute code when explicitly asked to."
),
model="gpt-4o",
tools=[
{"type": "code_interpreter"},
{"type": "function", "function": function_to_schema(today_tool)},
{"type": "function", "function": function_to_schema(yf_download_tool)},
{"type": "function", "function": function_to_schema(tavily_search_tool)},
],
)
show_json("assistant", assistant)
return assistant
def load_assistant():
assistant = openai_client.beta.assistants.retrieve(assistant_id)
print(get_json("assistant", assistant))
return assistant
def create_thread():
thread = openai_client.beta.threads.create()
print(get_json("thread", thread))
return thread
def create_message(thread, msg):
message = openai_client.beta.threads.messages.create(
role="user",
thread_id=thread.id,
content=msg,
)
print(get_json("message", message))
return message
def create_run(assistant, thread):
run = openai_client.beta.threads.runs.create(
assistant_id=assistant.id,
thread_id=thread.id,
parallel_tool_calls=False,
)
print(get_json("run", run))
return run
def wait_on_run(thread, run):
while run.status == "queued" or run.status == "in_progress":
run = openai_client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id,
)
time.sleep(1)
print(get_json("run", run))
if hasattr(run, "last_error") and run.last_error:
raise gr.Error(run.last_error)
return run
def get_run_steps(thread, run):
run_steps = openai_client.beta.threads.runs.steps.list(
thread_id=thread.id,
run_id=run.id,
order="asc",
)
print(get_json("run_steps", run_steps))
return run_steps
def execute_tool_call(tool_call):
name = tool_call.function.name
args = {}
if len(tool_call.function.arguments) > 10:
args_json = ""
try:
args_json = tool_call.function.arguments
args = json.loads(args_json)
except json.JSONDecodeError as e:
print(f"Error parsing function name '{name}' function args '{args_json}': {e}")
return tools[name](**args)
def execute_tool_calls(run_steps):
tool_call_ids = []
tool_call_results = []
for step in run_steps.data:
step_details = step.step_details
print(get_json("step_details", step_details))
if step.usage:
gr.Info(f"Step: {get_json('step_details', step_details.type)} {get_json('usage', step.usage)}", duration=30)
if hasattr(step_details, "tool_calls"):
for tool_call in step_details.tool_calls:
print(get_json("tool_call", tool_call))
func_name = ""
if hasattr(tool_call, "function"):
func_name = tool_call.function.name
tool_call_ids.append(tool_call.id)
tool_call_results.append(execute_tool_call(tool_call))
gr.Info(f"Tool: {tool_call.type} {func_name}", duration=30)
return tool_call_ids, tool_call_results
def recurse_execute_tool_calls(thread, run, run_steps, iteration):
tool_call_ids, tool_call_results = execute_tool_calls(run_steps)
if len(tool_call_ids) > iteration:
tool_output = {}
try:
tool_output = {
"tool_call_id": tool_call_ids[iteration],
"output": tool_call_results[iteration].to_json()
}
except AttributeError:
tool_output = {
"tool_call_id": tool_call_ids[iteration],
"output": tool_call_results[iteration]
}
gr.Info(tool_output, duration=30)
# https://platform.openai.com/docs/api-reference/runs/submitToolOutputs
run = openai_client.beta.threads.runs.submit_tool_outputs(
thread_id=thread.id,
run_id=run.id,
tool_outputs=[tool_output]
)
run = wait_on_run(thread, run)
run_steps = get_run_steps(thread, run)
recurse_execute_tool_calls(thread, run, run_steps, iteration + 1)
else:
return
def get_messages(thread):
messages = openai_client.beta.threads.messages.list(
thread_id=thread.id
)
print(get_json("messages", messages))
return messages
def extract_content_values(data):
text_values, image_values = [], []
for item in data.data:
for content in item.content:
if content.type == "text":
text_value = content.text.value
text_values.append(text_value)
#gr.Info(text_value, duration=15)
if content.type == "image_file":
image_value = content.image_file.file_id
image_values.append(image_value)
#gr.Info(image_value, duration=15)
return text_values, image_values |