Spaces:
Running
Running
File size: 7,230 Bytes
cfa124c 52ae7e3 2076977 5fcd91e 5eae7c2 cfa124c 5eae7c2 cfa124c 78a42dd 9064b67 2a3fc7b 9064b67 16d66ad 9064b67 2db705f 9064b67 5da2b8f 9064b67 5da2b8f 9064b67 16d66ad 2db705f 1d42f25 9064b67 2de5e80 0b33796 b184639 0b33796 59c15ca 7accea0 2db705f 16d66ad 2db705f 9064b67 2de5e80 b5a97de 2de5e80 9064b67 fc30f91 d92a321 43f000e 482b803 0784f56 b5a97de 0784f56 fc30f91 9064b67 2de5e80 b5a97de 2de5e80 9064b67 5fca11d 9064b67 39b970f 9064b67 2de5e80 5fcd91e 2de5e80 9064b67 2de5e80 b5a97de 2de5e80 9064b67 2de5e80 9064b67 2de5e80 b5a97de 2de5e80 9064b67 fc30f91 9064b67 fc30f91 b5a97de 2de5e80 fc30f91 67b3b6b 5fcd91e 67b3b6b 1d42f25 67b3b6b 42e9172 7ddca6e 1012371 42e9172 7ddca6e 9064b67 7ddca6e 5fcd91e fc30f91 67b3b6b 42e9172 0d6f576 42e9172 67b3b6b 42e9172 7ddca6e fc30f91 9064b67 2de5e80 03971e6 2de5e80 9064b67 6e6e7d5 9064b67 03869b0 2de5e80 9064b67 7ddca6e 29d58d0 7ddca6e 2de5e80 29d58d0 9064b67 5befa9c 50ddfc1 5da2b8f e04bd50 5da2b8f 16d66ad 42c9326 e893203 d747e39 9064b67 5da2b8f 9064b67 5da2b8f 9064b67 fc30f91 b533c4c 42e9172 1b1181f 5fcd91e 42e9172 07a71c9 5fcd91e 378fa94 5fcd91e 378fa94 5fcd91e 07a71c9 1b1181f 9064b67 fc30f91 9064b67 29d58d0 29028c0 7ddca6e a2df0ee 19bfc9a 2de5e80 7ddca6e 1057e6a 5e0acb9 c40c2ce d92a321 edd99e4 b184639 52ae7e3 7fe3430 3f12f24 1292850 9247b68 1292850 da3afee f60e752 3f12f24 325a748 952a213 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# TODO:
#
# 1. Gradio session / multi-user thread
# 2. Function calling - https://platform.openai.com/docs/assistants/tools/function-calling
# - get_stock_price - yfinance
# Reference:
#
# https://vimeo.com/990334325/56b552bc7a
# https://platform.openai.com/playground/assistants
# https://cookbook.openai.com/examples/assistants_api_overview_python
# https://platform.openai.com/docs/api-reference/assistants/createAssistant
# https://platform.openai.com/docs/assistants/tools
import gradio as gr
import json, openai, os, time
from datetime import date
from openai import OpenAI
from utils import function_to_schema, show_json
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
assistant, thread = None, None
def today_tool(text: str) -> str:
"""Returns today's date. Use this for any questions related to knowing today's date.
The input should always be an empty string, and this function will always return today's date.
Any date mathematics should occur outside this function."""
return str(date.today())
tools = {
"today_tool": today_tool,
}
def create_assistant(client):
assistant = client.beta.assistants.create(
name="Python Code Generator",
instructions=(
"You are a Python programming language expert that "
"generates Pylint-compliant code and explains it. "
"Only execute code when explicitly asked to."
),
model="gpt-4o",
tools=[
{"type": "code_interpreter"},
{"type": "function", "function": function_to_schema(today_tool)},
],
)
#show_json("assistant", assistant)
return assistant
def load_assistant(client):
ASSISTANT_ID = "asst_TpZgBd2QYaxUxCwUy8J9m3Bq"
assistant = client.beta.assistants.retrieve(ASSISTANT_ID)
#show_json("assistant", assistant)
return assistant
def create_thread(client):
thread = client.beta.threads.create()
#show_json("thread", thread)
return thread
def create_message(client, thread, msg):
message = client.beta.threads.messages.create(
role="user",
thread_id=thread.id,
content=msg,
)
#show_json("message", message)
return message
def create_run(client, assistant, thread):
run = client.beta.threads.runs.create(
assistant_id=assistant.id,
thread_id=thread.id,
)
#show_json("run", run)
return run
def wait_on_run(client, thread, run):
while run.status == "queued" or run.status == "in_progress":
run = client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id,
)
time.sleep(0.25)
#show_json("run", run)
return run
def get_run_steps(client, thread, run):
run_steps = client.beta.threads.runs.steps.list(
thread_id=thread.id,
run_id=run.id,
order="asc",
)
#show_json("run_steps", run_steps)
return run_steps
def execute_tool_call(tool_call):
name = tool_call.function.name
args = json.loads(tool_call.function.arguments)
#global tools
return tools[name](**args)
def execute_tool_calls(run_steps):
run_step_details = []
tool_call_id = ""
tool_call_result = ""
for step in run_steps.data:
step_details = step.step_details
run_step_details.append(step_details)
show_json("step_details", step_details)
if hasattr(step_details, "tool_calls"):
for tool_call in step_details.tool_calls:
show_json("tool_call", tool_call)
if hasattr(tool_call, "function"):
tool_call_id = tool_call.id
tool_call_result = execute_tool_call(tool_call)
return tool_call_id, tool_call_result
def get_messages(client, thread):
messages = client.beta.threads.messages.list(
thread_id=thread.id
)
#show_json("messages", messages)
return messages
def extract_content_values(data):
text_values, image_values = [], []
for item in data.data:
for content in item.content:
if content.type == "text":
text_value = content.text.value
text_values.append(text_value)
if content.type == "image_file":
image_value = content.image_file.file_id
image_values.append(image_value)
return text_values, image_values
def chat(message, history):
if not message:
raise gr.Error("Message is required.")
global client, assistant, thread
if assistant == None:
assistant = create_assistant(client)
if thread == None or len(history) == 0:
thread = create_thread(client)
create_message(client, thread, message)
run = create_run(client, assistant, thread)
run = wait_on_run(client, thread, run)
run_steps = get_run_steps(client, thread, run)
tool_call_id, tool_call_result = execute_tool_calls(run_steps)
### TODO
if tool_call_result:
print("### tool_call_id=" + tool_call_id)
print("### tool_call_result=" + tool_call_result)
run = client.beta.threads.runs.submit_tool_outputs(
thread_id=thread.id,
run_id=run.id,
tool_outputs=[
{
"tool_call_id": tool_call_id,
"output": tool_call_result
}
]
)
run = wait_on_run(client, thread, run)
run_steps = get_run_steps(client, thread, run)
tool_call_id, tool_call_result = execute_tool_calls(run_steps)
###
messages = get_messages(client, thread)
text_values, image_values = extract_content_values(messages)
download_link = ""
if len(image_values) > 0:
download_link = f"<p>Download: https://platform.openai.com/storage/files/{image_values[0]}</p>"
return f"{text_values[0]}{download_link}"
gr.ChatInterface(
fn=chat,
chatbot=gr.Chatbot(height=350),
textbox=gr.Textbox(placeholder="Ask anything", container=False, scale=7),
title="Python Code Generator",
description="The assistant can generate, explain, fix, optimize, document, and test code. It can also execute code.",
clear_btn="Clear",
retry_btn=None,
undo_btn=None,
examples=[
["Generate: Python code to fine-tune model meta-llama/Meta-Llama-3.1-8B on dataset gretelai/synthetic_text_to_sql using QLoRA"],
["Explain: r\"^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\\W]).{8,}$\""],
["Fix: x = [5, 2, 1, 3, 4]; print(x.sort())"],
["Optimize: x = []; for i in range(0, 10000): x.append(i)"],
["Execute: First 25 Fibbonaci numbers"],
["Get today's date, then generate a chart using mock data, showing stock gain YTD for NVDA, MSFT, AAPL, and GOOG, x-axis is 'Day' and y-axis is 'YTD Gain %'"]
],
cache_examples=False,
).launch() |