Spaces:
Running
Running
File size: 10,029 Bytes
cfa124c 51d9ec8 5eae7c2 cfa124c 5eae7c2 cfa124c 78a42dd 9064b67 6a5793a a31fc9a 2a3fc7b 9064b67 16d66ad 9064b67 6a5793a 2db705f 9064b67 5da2b8f 9064b67 10d6c27 5da2b8f 9064b67 74d0b36 8b7dba2 16d66ad 2db705f 70b1d7d 6a5793a a31fc9a 1d42f25 a31fc9a 1d42f25 9064b67 2de5e80 0b33796 10d6c27 59c15ca 7accea0 2db705f 16d66ad a31fc9a 2db705f 9064b67 2de5e80 8153096 2de5e80 9064b67 fc30f91 10d6c27 0784f56 8153096 0784f56 fc30f91 9064b67 2de5e80 8153096 2de5e80 9064b67 5fca11d 9064b67 39b970f 9064b67 2de5e80 8153096 2de5e80 9064b67 ee9f7f7 9064b67 2de5e80 8153096 2de5e80 9064b67 b23aed2 9064b67 2de5e80 a31fc9a 2de5e80 8153096 2de5e80 9064b67 fc30f91 9064b67 fc30f91 8153096 2de5e80 fc30f91 67b3b6b 8b7dba2 1d42f25 67b3b6b 42e9172 7ddca6e 1012371 e7c3210 7ddca6e 9064b67 7ddca6e 5fcd91e fc30f91 67b3b6b 42e9172 0d6f576 e7c3210 67b3b6b e7c3210 7ddca6e fc30f91 9064b67 2de5e80 8153096 2de5e80 9064b67 6e6e7d5 9064b67 03869b0 2de5e80 9064b67 7ddca6e 29d58d0 7ddca6e 2de5e80 29d58d0 9064b67 e7c3210 c865dde e7c3210 5e2a083 6e17db2 dbcf960 5e2a083 dbcf960 6e17db2 dbcf960 5e2a083 dbcf960 6e17db2 e7c3210 c865dde e7c3210 5befa9c 50ddfc1 536b36d e04bd50 5da2b8f 9d0ab7a 42c9326 e893203 d747e39 9064b67 5da2b8f 9064b67 5da2b8f 9064b67 536b36d fc30f91 7bf3f3d 536b36d e7c3210 1b1181f 55b9732 229a35e 55b9732 e7c3210 a31fc9a 261ec6b 27f2ee0 b1356b5 27f2ee0 a31fc9a 1b1181f 536b36d b1356b5 536b36d 0150bec 9064b67 fc30f91 9064b67 29d58d0 29028c0 7ddca6e a2df0ee 19bfc9a 2de5e80 6b06428 6e1d034 1057e6a 5e0acb9 c40c2ce d92a321 edd99e4 b184639 10d6c27 536b36d 10d6c27 7fe3430 3f12f24 1292850 9247b68 1292850 da3afee 20a0be5 3f12f24 325a748 952a213 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# TODO:
#
# 1. Function calling - https://platform.openai.com/docs/assistants/tools/function-calling
# 2. Gradio session / multi-user thread
# Reference:
#
# https://vimeo.com/990334325/56b552bc7a
# https://platform.openai.com/playground/assistants
# https://cookbook.openai.com/examples/assistants_api_overview_python
# https://platform.openai.com/docs/api-reference/assistants/createAssistant
# https://platform.openai.com/docs/assistants/tools
import gradio as gr
import pandas as pd
import yfinance as yf
import json, openai, os, time
from datetime import date
from openai import OpenAI
from typing import List
from utils import function_to_schema, show_json
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
assistant_id = "asst_ypbcWnilAd60bc2DQ8haDL5P"
assistant, thread = None, None
def today_tool() -> str:
"""Returns today's date. Use this function for any questions related to knowing today's date.
There is no input. This function always returns today's date."""
return str(date.today())
def yf_download_tool(tickers: List[str], start_date: date, end_date: date) -> pd.DataFrame:
"""Returns historical stock data for given tickers from a start date to an end date
using the yfinance library download function.
Use this function for any questions related to getting historical stock data.
The input should be the tickers as a List of strings, a start date, and an end date.
This function always returns a pandas DataFrame."""
return yf.download(tickers, start=start_date, end=end_date)
tools = {
"today_tool": today_tool,
"yf_download_tool": yf_download_tool,
}
def create_assistant(client):
assistant = client.beta.assistants.create(
name="Python Code Generator",
instructions=(
"You are a Python programming language expert that "
"generates Pylint-compliant code and explains it. "
"Execute code when explicitly asked to."
),
model="gpt-4o",
tools=[
{"type": "code_interpreter"},
{"type": "function", "function": function_to_schema(today_tool)},
{"type": "function", "function": function_to_schema(yf_download_tool)},
],
)
show_json("assistant", assistant)
return assistant
def load_assistant(client):
assistant = client.beta.assistants.retrieve(assistant_id)
show_json("assistant", assistant)
return assistant
def create_thread(client):
thread = client.beta.threads.create()
show_json("thread", thread)
return thread
def create_message(client, thread, msg):
message = client.beta.threads.messages.create(
role="user",
thread_id=thread.id,
content=msg,
)
show_json("message", message)
return message
def create_run(client, assistant, thread):
run = client.beta.threads.runs.create(
assistant_id=assistant.id,
thread_id=thread.id,
parallel_tool_calls=False,
)
show_json("run", run)
return run
def wait_on_run(client, thread, run):
while run.status == "queued" or run.status == "in_progress":
print("### " + run.status)
run = client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id,
)
time.sleep(0.5)
show_json("run", run)
return run
def get_run_steps(client, thread, run):
run_steps = client.beta.threads.runs.steps.list(
thread_id=thread.id,
run_id=run.id,
order="asc",
)
show_json("run_steps", run_steps)
return run_steps
def execute_tool_call(tool_call):
name = tool_call.function.name
args = json.loads(tool_call.function.arguments)
return tools[name](**args)
def execute_tool_calls(run_steps):
run_step_details = []
tool_call_ids = []
tool_call_results = []
for step in run_steps.data:
step_details = step.step_details
run_step_details.append(step_details)
show_json("step_details", step_details)
if hasattr(step_details, "tool_calls"):
for tool_call in step_details.tool_calls:
show_json("tool_call", tool_call)
if hasattr(tool_call, "function"):
tool_call_ids.append(tool_call.id)
tool_call_results.append(execute_tool_call(tool_call))
return tool_call_ids, tool_call_results
def get_messages(client, thread):
messages = client.beta.threads.messages.list(
thread_id=thread.id
)
show_json("messages", messages)
return messages
def extract_content_values(data):
text_values, image_values = [], []
for item in data.data:
for content in item.content:
if content.type == "text":
text_value = content.text.value
text_values.append(text_value)
if content.type == "image_file":
image_value = content.image_file.file_id
image_values.append(image_value)
return text_values, image_values
###
def generate_tool_outputs(tool_call_ids, tool_call_results):
tool_outputs = []
for tool_call_id, tool_call_result in zip(tool_call_ids, tool_call_results):
tool_output = {}
try:
tool_output = {
"tool_call_id": tool_call_id,
"output": tool_call_result.to_json()
}
print("###")
print(tool_call_id)
print(tool_call_result.to_json())
print("###")
except AttributeError:
tool_output = {
"tool_call_id": tool_call_id,
"output": tool_call_result
}
print("###")
print(tool_call_id)
print(tool_call_result)
print("###")
tool_outputs.append(tool_output)
return tool_outputs
###
def chat(message, history):
if not message:
raise gr.Error("Message is required.")
global assistant, thread
if assistant == None:
assistant = load_assistant(client)
if thread == None or len(history) == 0:
thread = create_thread(client)
create_message(client, thread, message)
run = create_run(client, assistant, thread)
run = wait_on_run(client, thread, run)
run_steps = get_run_steps(client, thread, run)
### TODO
tool_call_ids, tool_call_results = execute_tool_calls(run_steps)
print("###")
print(len(tool_call_ids))
print(tool_call_ids)
print(tool_call_ids[0])
print(tool_call_results)
print(tool_call_results[0])
print("###")
if tool_call_ids[0]:
# https://platform.openai.com/docs/api-reference/runs/submitToolOutputs
run = client.beta.threads.runs.submit_tool_outputs(
thread_id=thread.id,
run_id=run.id,
#tool_outputs=generate_tool_outputs(tool_call_ids, tool_call_results)
tool_outputs=[
{
"tool_call_id": tool_call_ids[0],
"output": tool_call_results[0]
}
]
)
run = wait_on_run(client, thread, run)
run_steps = get_run_steps(client, thread, run)
###
tool_call_ids, tool_call_results = execute_tool_calls(run_steps)
print("###")
print(len(tool_call_ids))
print(tool_call_ids)
print(tool_call_ids[1])
print(tool_call_results)
print(tool_call_results[1])
print("###")
if tool_call_ids[1]:
# https://platform.openai.com/docs/api-reference/runs/submitToolOutputs
run = client.beta.threads.runs.submit_tool_outputs(
thread_id=thread.id,
run_id=run.id,
#tool_outputs=generate_tool_outputs(tool_call_ids, tool_call_results)
tool_outputs=[
{
"tool_call_id": tool_call_ids[1],
"output": tool_call_results[1].to_json()
}
]
)
run = wait_on_run(client, thread, run)
run_steps = get_run_steps(client, thread, run)
###
messages = get_messages(client, thread)
text_values, image_values = extract_content_values(messages)
download_link = ""
if len(image_values) > 0:
download_link = f"<p>Download: https://platform.openai.com/storage/files/{image_values[0]}</p>"
#return f"{text_values[0]}{download_link}"
return f"{'<hr>'.join(reversed(text_values))}{download_link}"
gr.ChatInterface(
fn=chat,
chatbot=gr.Chatbot(height=350),
textbox=gr.Textbox(placeholder="Ask anything", container=False, scale=7),
title="Python Code Generator",
description=(
"The assistant can **generate, explain, fix, optimize, document, and test code**. "
"It can also **execute code**. "
"It has access to <b>today tool</b> (get current date) and "
"to **yfinance download tool** (get stock data)."
),
clear_btn="Clear",
retry_btn=None,
undo_btn=None,
examples=[
["Generate: Python code to fine-tune model meta-llama/Meta-Llama-3.1-8B on dataset gretelai/synthetic_text_to_sql using QLoRA"],
["Explain: r\"^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\\W]).{8,}$\""],
["Fix: x = [5, 2, 1, 3, 4]; print(x.sort())"],
["Optimize: x = []; for i in range(0, 10000): x.append(i)"],
["Execute: First 25 Fibbonaci numbers"],
["Create a plot showing stock gain QTD for NVDA and MSFT, x-axis is 'Day' and y-axis is 'QTD Gain %'"]
],
cache_examples=False,
).launch() |