File size: 5,815 Bytes
cfa124c
 
52ae7e3
2076977
 
 
5eae7c2
cfa124c
 
 
5eae7c2
 
cfa124c
 
78a42dd
9064b67
8b60e3b
9064b67
2db705f
9064b67
2db705f
9064b67
5da2b8f
9064b67
5da2b8f
9064b67
2db705f
 
 
 
 
 
 
 
 
9064b67
 
2de5e80
0b33796
b184639
 
0b33796
 
59c15ca
7accea0
2db705f
 
 
9064b67
2de5e80
9064b67
2de5e80
9064b67
fc30f91
d92a321
482b803
 
 
0784f56
 
 
 
fc30f91
9064b67
 
2de5e80
9064b67
2de5e80
9064b67
 
5fca11d
9064b67
 
 
39b970f
9064b67
2de5e80
9064b67
2de5e80
9064b67
 
 
 
 
 
 
2de5e80
9064b67
2de5e80
9064b67
 
 
 
 
 
 
 
2de5e80
9064b67
2de5e80
9064b67
2de5e80
9064b67
 
fc30f91
9064b67
 
 
 
 
fc30f91
 
2de5e80
fc30f91
 
 
7ddca6e
 
9064b67
 
7ddca6e
fc30f91
9064b67
fc30f91
7ddca6e
 
fc30f91
9064b67
 
 
2de5e80
9064b67
2de5e80
9064b67
6e6e7d5
9064b67
03869b0
2de5e80
9064b67
 
 
7ddca6e
 
29d58d0
7ddca6e
 
2de5e80
29d58d0
9064b67
5befa9c
50ddfc1
 
 
5da2b8f
e04bd50
5da2b8f
482b803
42c9326
e893203
d747e39
9064b67
5da2b8f
9064b67
5da2b8f
 
9064b67
fc30f91
b533c4c
d7dab55
9064b67
fc30f91
9064b67
29d58d0
29028c0
7ddca6e
 
a2df0ee
19bfc9a
2de5e80
7ddca6e
1057e6a
5e0acb9
c40c2ce
d92a321
edd99e4
b184639
52ae7e3
7fe3430
 
 
3f12f24
1292850
 
9247b68
1292850
da3afee
551c92e
3f12f24
325a748
952a213
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# TODO:
#
# 1. Gradio session / multi-user thread
# 2. Function calling - https://platform.openai.com/docs/assistants/tools/function-calling
#    - Date tool
#    - Web scraping tool (Tavily API)

# Reference:
#
# https://vimeo.com/990334325/56b552bc7a
# https://platform.openai.com/playground/assistants
# https://cookbook.openai.com/examples/assistants_api_overview_python
# https://platform.openai.com/docs/api-reference/assistants/createAssistant
# https://platform.openai.com/docs/assistants/tools

import gradio as gr
import openai, os, time

from datetime import datetime
from openai import OpenAI
from utils import function_to_schema, show_json

client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

assistant, thread = None, None

def get_current_date():
    """Use to get the current date."""
    print(datetime.now())

def search_engine(search_query):
    """Use to search the web."""
    print("search_engine")
    return "TODO"

def create_assistant(client):
    assistant = client.beta.assistants.create(
        name="Python Code Generator",
        instructions=(
                         "You are a Python programming language expert that "
                         "generates Pylint-compliant code and explains it. "
                         "Only execute code when explicitly asked to."
                     ),
        model="gpt-4o",
        tools=[
            {"type": "code_interpreter"},
            {"type": "function", "function": function_to_schema(get_current_date)},
        ],
    )
    
    show_json("assistant", assistant)
    
    return assistant

def load_assistant(client):
    ASSISTANT_ID = "asst_VL5JZQzUSlIhAF8k8CfCcR0f"
    
    assistant = client.beta.assistants.retrieve(ASSISTANT_ID)

    show_json("assistant", assistant)
    
    return assistant

def create_thread(client):
    thread = client.beta.threads.create()
    
    show_json("thread", thread)
    
    return thread

def create_message(client, thread, msg):        
    message = client.beta.threads.messages.create(
        role="user",
        thread_id=thread.id,
        content=msg,
    )
    
    show_json("message", message)
    
    return message

def create_run(client, assistant, thread):
    run = client.beta.threads.runs.create(
        assistant_id=assistant.id,
        thread_id=thread.id,
    )
    
    show_json("run", run)
    
    return run

def wait_on_run(client, thread, run):
    while run.status == "queued" or run.status == "in_progress":
        run = client.beta.threads.runs.retrieve(
            thread_id=thread.id,
            run_id=run.id,
        )
    
        time.sleep(0.25)
    
    show_json("run", run)
    
    return run

def get_run_steps(client, thread, run):
    run_steps = client.beta.threads.runs.steps.list(
        thread_id=thread.id,
        run_id=run.id,
        order="asc",
    )

    show_json("run_steps", run_steps)
    
    return run_steps

def get_run_step_details(run_steps):
    run_step_details = []
    
    for step in run_steps.data:
        step_details = step.step_details
        run_step_details.append(step_details)
        
        show_json("step_details", step_details)

    return run_step_details

def get_messages(client, thread):
    messages = client.beta.threads.messages.list(
        thread_id=thread.id
    )
    
    show_json("messages", messages)
    
    return messages
                        
def extract_content_values(data):
    text_values, image_values = [], []
    
    for item in data.data:
        for content in item.content:
            if content.type == "text":
                text_value = content.text.value
                text_values.append(text_value)
            if content.type == "image_file":
                image_value = content.image_file.file_id
                image_values.append(image_value)
    
    return text_values, image_values

def chat(message, history):
    if not message:
        raise gr.Error("Message is required.")
    
    global client, assistant, thread     
    
    if assistant == None:
        assistant = load_assistant(client)
    
    if thread == None or len(history) == 0:
        thread = create_thread(client)
        
    create_message(client, thread, message)

    run = create_run(client, assistant, thread)
    run = wait_on_run(client, thread, run)

    run_steps = get_run_steps(client, thread, run)
    
    get_run_step_details(run_steps)
    
    messages = get_messages(client, thread)

    text_values, image_values = extract_content_values(messages)

    download_link = ""
    
    if len(image_values) > 0:
        download_link = f"<p>Download: https://platform.openai.com/storage/files/{image_values[0]}</p>"
    
    return f"{text_values[0]}{download_link}"

gr.ChatInterface(
        fn=chat,
        chatbot=gr.Chatbot(height=350),
        textbox=gr.Textbox(placeholder="Ask anything", container=False, scale=7),
        title="Python Code Generator",
        description="The assistant can generate, explain, fix, optimize, document, and test code. It can also execute code.",
        clear_btn="Clear",
        retry_btn=None,
        undo_btn=None,
        examples=[
                  ["Generate: Python code to fine-tune model meta-llama/Meta-Llama-3.1-8B on dataset gretelai/synthetic_text_to_sql using QLoRA"],
                  ["Explain: r\"^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\\W]).{8,}$\""],
                  ["Fix: x = [5, 2, 1, 3, 4]; print(x.sort())"],
                  ["Optimize: x = []; for i in range(0, 10000): x.append(i)"],
                  ["Execute: First 25 Fibbonaci numbers"],
                  ["Execute using mock data: Chart showing stock gain YTD for NVDA, MSFT, AAPL, and GOOG, x-axis is 'Day' and y-axis is 'YTD Gain %'"]
                 ],
        cache_examples=False,
    ).launch()