Spaces:
Running
Running
File size: 4,051 Bytes
9064b67 2de5e80 59c15ca 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 9064b67 2de5e80 1057e6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
import openai, os, time
from openai import OpenAI
from utils import show_json
_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
_assistant, _thread = None, None
def create_assistant(client):
assistant = client.beta.assistants.create(
name="Python Code Generator",
instructions="You are a Python programming language expert that generates Pylint-compliant code and explains it. Only execute code when explicitly asked to.",
model="gpt-4o",
tools=[{"type": "code_interpreter"}],
)
show_json("assistant", assistant)
return assistant
def create_thread(client):
thread = client.beta.threads.create()
show_json("thread", thread)
return thread
def create_message(client, thread, msg):
message = client.beta.threads.messages.create(
role="user",
thread_id=thread.id,
content=msg,
)
show_json("message", message)
return message
def create_run(client, assistant, thread):
run = client.beta.threads.runs.create(
assistant_id=assistant.id,
thread_id=thread.id,
)
show_json("run", run)
return run
def wait_on_run(client, thread, run):
while run.status == "queued" or run.status == "in_progress":
run = client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id,
)
time.sleep(0.25)
show_json("run", run)
return run
def list_run_steps(client, thread, run):
run_steps = client.beta.threads.runs.steps.list(
thread_id=thread.id,
run_id=run.id,
order="asc",
)
for step in run_steps.data:
step_details = step.step_details
show_json("step_details", step_details)
return run_steps
def list_messages(client, thread):
messages = client.beta.threads.messages.list(
thread_id=thread.id
)
show_json("messages", messages)
return messages
def extract_content_values(data):
content_values = []
for item in data.data:
for content in item.content:
if content.type == "text":
content_values.append(content.text.value)
return content_values
def chat(message, history, openai_api_key):
global _client, _assistant, _thread
if _assistant == None:
_assistant = create_assistant(_client)
if _thread == None:
_thread = create_thread(_client)
create_message(_client, _thread, message)
run = create_run(_client, _assistant, _thread)
run = wait_on_run(_client, _thread, run)
list_run_steps(_client, _thread, run)
messages = list_messages(_client, _thread)
content_values = extract_content_values(messages)
return content_values[0]
def vote(data: gr.LikeData):
print("voted")
with gr.Blocks() as demo:
gr.ChatInterface(
chat,
chatbot=gr.Chatbot(height=300),
textbox=gr.Textbox(placeholder="Ask anything", container=False, scale=7),
title="Python Code Generator",
description="Generate, explain, fix, optimize, document, test, help, ... Can execute code when asked to.",
clear_btn="Clear",
retry_btn="Retry",
undo_btn="Undo",
examples=[
["Generate: NumPy/Pandas/Matplotlib & yfinance trading app", "sk-<BringYourOwn>"],
["Explain: r'^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\\W]).{8,}$'", "sk-<BringYourOwn>"],
["Fix: x = [5, 2, 1, 3, 4]; print(x.sort())", "sk-<BringYourOwn>"],
["Optimize: x = []; for i in range(0, 10000): x.append(i)", "sk-<BringYourOwn>"],
["Execute: Code to generate the first 20 fibbonaci numbers", "sk-<BringYourOwn>"],
],
cache_examples=False,
additional_inputs=[
gr.Textbox("sk-", label="OpenAI API Key", type = "password"),
],
),
chatbot.like(vote, None, None)
demo.launch() |