Spaces:
Running
Running
File size: 2,588 Bytes
aa0eed8 b1972fa 031211a aa0eed8 89fd850 7d51c10 89fd850 453ee12 24755bb 38dfd80 24755bb 3017744 719f157 f612802 719f157 06d9591 06cc452 06d9591 06cc452 06d9591 453ee12 06d9591 453ee12 24755bb aa0eed8 19797f3 976e692 8fae4d3 a985e86 19797f3 976e692 19797f3 8fae4d3 19797f3 5d6c0c0 19797f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import gradio as gr
import json, openai, os, time
from openai import OpenAI
def show_json(obj):
print("###")
print(json.loads(obj.model_dump_json()))
print("###")
def wait_on_run(run, thread):
while run.status == "queued" or run.status == "in_progress":
run = client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id,
)
time.sleep(0.5)
return run
def extract_content_value(data):
content_values = []
for item in data.data:
for content in item.content:
if content.type == 'text':
content_values.append(content.text.value)
return content_values
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
assistant = client.beta.assistants.create(
name="Math Tutor",
instructions="You are a personal math tutor. Answer questions briefly, in a sentence or less.",
model="gpt-4-1106-preview",
)
show_json(assistant)
thread = client.beta.threads.create()
show_json(thread)
def chat(message, history):
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": message})
print("###")
print(history_openai_format)
print("###")
message = client.beta.threads.messages.create(
thread_id=thread.id,
role="user",
content=message,
)
show_json(message)
print("###")
print(thread.id)
print("###")
print(assistant.id)
run = client.beta.threads.runs.create(
thread_id=thread.id,
assistant_id=assistant.id,
)
show_json(run)
run = wait_on_run(run, thread)
show_json(run)
messages = client.beta.threads.messages.list(thread_id=thread.id)
show_json(messages)
return extract_content_value(messages)[0]
gr.ChatInterface(
chat,
chatbot=gr.Chatbot(height=300),
textbox=gr.Textbox(placeholder="Ask Math Tutor any question", container=False, scale=7),
title="Math Tutor",
description="Question",
theme="soft",
examples=["I need to solve the equation `3x + 12 = 14`. Can you help me?"],
cache_examples=False,
retry_btn=None,
undo_btn=None,
clear_btn="Clear",
#multimodal=True,
#additional_inputs=[
# gr.Textbox("You are a personal math tutor. Answer questions briefly, in a sentence or less.", label="System Prompt"),
#],
).launch() |