#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright @2023 RhapsodyAI, ModelBest Inc. (modelbest.cn) # # @author: bokai xu # @date: 2024/07/13 # import tqdm from PIL import Image import hashlib import torch import fitz import threading import gradio as gr import spaces import os from transformers import AutoModel from transformers import AutoTokenizer from PIL import Image import torch import os import numpy as np import json cache_dir = '/data/kb_cache' os.makedirs(cache_dir, exist_ok=True) def get_image_md5(img: Image.Image): img_byte_array = img.tobytes() hash_md5 = hashlib.md5() hash_md5.update(img_byte_array) hex_digest = hash_md5.hexdigest() return hex_digest def calculate_md5_from_binary(binary_data): hash_md5 = hashlib.md5() hash_md5.update(binary_data) return hash_md5.hexdigest() @spaces.GPU(duration=100) def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()): global model, tokenizer knowledge_base_name = calculate_md5_from_binary(pdf_file_binary) this_cache_dir = os.path.join(cache_dir, knowledge_base_name) os.makedirs(this_cache_dir, exist_ok=True) with open(os.path.join(this_cache_dir, f"src.pdf"), 'wb') as file: file.write(pdf_file_binary) dpi = 200 doc = fitz.open("pdf", pdf_file_binary) reps_list = [] images = [] image_md5s = [] for page in progress.tqdm(doc): # with self.lock: # because we hope one 16G gpu only process one image at the same time pix = page.get_pixmap(dpi=dpi) image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) image_md5 = get_image_md5(image) image_md5s.append(image_md5) with torch.no_grad(): reps = model(text=[''], image=[image], tokenizer=tokenizer).reps reps_list.append(reps.squeeze(0).cpu().numpy()) images.append(image) for idx in range(len(images)): image = images[idx] image_md5 = image_md5s[idx] cache_image_path = os.path.join(this_cache_dir, f"{image_md5}.png") image.save(cache_image_path) np.save(os.path.join(this_cache_dir, f"reps.npy"), reps_list) with open(os.path.join(this_cache_dir, f"md5s.txt"), 'w') as f: for item in image_md5s: f.write(item+'\n') return knowledge_base_name # @spaces.GPU def retrieve_gradio(knowledge_base: str, query: str, topk: int): global model, tokenizer target_cache_dir = os.path.join(cache_dir, knowledge_base) if not os.path.exists(target_cache_dir): return None md5s = [] with open(os.path.join(target_cache_dir, f"md5s.txt"), 'r') as f: for line in f: md5s.append(line.rstrip('\n')) doc_reps = np.load(os.path.join(target_cache_dir, f"reps.npy")) query_with_instruction = "Represent this query for retrieving relavant document: " + query with torch.no_grad(): query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu() query_md5 = hashlib.md5(query.encode()).hexdigest() doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0) similarities = torch.matmul(query_rep, doc_reps_cat.T) topk_values, topk_doc_ids = torch.topk(similarities, k=topk) topk_values_np = topk_values.cpu().numpy() topk_doc_ids_np = topk_doc_ids.cpu().numpy() similarities_np = similarities.cpu().numpy() images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np] with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f: f.write(json.dumps( { "knowledge_base": knowledge_base, "query": query, "retrived_docs": [os.path.join(target_cache_dir, f"{md5s[idx]}.png") for idx in topk_doc_ids_np] }, indent=4, ensure_ascii=False )) return images_topk def upvote(knowledge_base, query): global model, tokenizer target_cache_dir = os.path.join(cache_dir, knowledge_base) query_md5 = hashlib.md5(query.encode()).hexdigest() with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f: data = json.loads(f.read()) data["user_preference"] = "upvote" with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f: f.write(json.dumps(data, indent=4, ensure_ascii=False)) print("up", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json")) gr.Info('Received, babe! Thank you!') return def downvote(knowledge_base, query): global model, tokenizer target_cache_dir = os.path.join(cache_dir, knowledge_base) query_md5 = hashlib.md5(query.encode()).hexdigest() with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f: data = json.loads(f.read()) data["user_preference"] = "downvote" with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f: f.write(json.dumps(data, indent=4, ensure_ascii=False)) print("down", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json")) gr.Info('Received, babe! Thank you!') return device = 'cuda' model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True) model.to(device) with gr.Blocks() as app: gr.Markdown("# Memex: OCR-free Visual Document Embedding Model as Your Personal Librarian") gr.Markdown("""The model only takes images as document-side inputs and produce vectors representing document pages. Memex is trained with over 200k query-visual document pairs, including textual document, visual document, arxiv figures, plots, charts, industry documents, textbooks, ebooks, and openly-available PDFs, etc. Its performance is on a par with our ablation text embedding model on text-oriented documents, and an advantages on visually-intensive documents. Our model is capable of: - Help you read a long visually-intensive or text-oriented PDF document and find the pages that answer your question. - Help you build a personal library and retireve book pages from a large collection of books. - It works like human: read and comprehend with vision and remember multimodal information in hippocampus.""") gr.Markdown("- Our model is proudly based on MiniCPM-V series [MiniCPM-V-2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6) [MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2).") gr.Markdown("- We open-sourced our model at [RhapsodyAI/minicpm-visual-embedding-v0](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0)") gr.Markdown("- Currently we support PDF document with less than 50 pages, PDF over 50 pages will reach GPU time limit.") with gr.Row(): file_input = gr.File(type="binary", label="Upload PDF") file_result = gr.Text(label="Knowledge Base ID (remember this!)") process_button = gr.Button("Process PDF (Don't click until PDF upload success)") process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result) with gr.Row(): kb_id_input = gr.Text(label="Your Knowledge Base ID (paste your Knowledge Base ID here:)") query_input = gr.Text(label="Your Queston") topk_input = inputs=gr.Number(value=5, minimum=1, maximum=10, step=1, label="Number of pages to retrieve") retrieve_button = gr.Button("Step 1: Retrieve") with gr.Row(): downvote_button = gr.Button("šŸ¤£Downvote") upvote_button = gr.Button("šŸ¤—Upvote") with gr.Row(): images_output = gr.Gallery(label="Step 2: Retrieved Pages") retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output) upvote_button.click(upvote, inputs=[kb_id_input, query_input], outputs=None) downvote_button.click(downvote, inputs=[kb_id_input, query_input], outputs=None) gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.") app.launch()