Spaces:
Runtime error
Runtime error
Create spacy_recognizer.py
Browse files- spacy_recognizer.py +131 -0
spacy_recognizer.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Optional, List, Tuple, Set
|
3 |
+
|
4 |
+
from presidio_analyzer import (
|
5 |
+
RecognizerResult,
|
6 |
+
LocalRecognizer,
|
7 |
+
AnalysisExplanation,
|
8 |
+
)
|
9 |
+
from presidio_analyzer.nlp_engine import NlpArtifacts
|
10 |
+
from presidio_analyzer.predefined_recognizers.spacy_recognizer import SpacyRecognizer
|
11 |
+
|
12 |
+
logger = logging.getLogger("presidio-analyzer")
|
13 |
+
|
14 |
+
|
15 |
+
class CustomSpacyRecognizer(LocalRecognizer):
|
16 |
+
|
17 |
+
ENTITIES = [
|
18 |
+
"LOCATION",
|
19 |
+
"PERSON",
|
20 |
+
"NRP",
|
21 |
+
"ORGANIZATION",
|
22 |
+
"DATE_TIME",
|
23 |
+
]
|
24 |
+
|
25 |
+
DEFAULT_EXPLANATION = "Identified as {} by Spacy's Named Entity Recognition (Privy-trained)"
|
26 |
+
|
27 |
+
CHECK_LABEL_GROUPS = [
|
28 |
+
({"LOCATION"}, {"LOC", "LOCATION", "STREET_ADDRESS", "COORDINATE"}),
|
29 |
+
({"PERSON"}, {"PER", "PERSON"}),
|
30 |
+
({"NRP"}, {"NORP", "NRP"}),
|
31 |
+
({"ORGANIZATION"}, {"ORG"}),
|
32 |
+
({"DATE_TIME"}, {"DATE_TIME"}),
|
33 |
+
]
|
34 |
+
|
35 |
+
MODEL_LANGUAGES = {
|
36 |
+
"en": "beki/en_spacy_pii_distilbert",
|
37 |
+
}
|
38 |
+
|
39 |
+
PRESIDIO_EQUIVALENCES = {
|
40 |
+
"PER": "PERSON",
|
41 |
+
"LOC": "LOCATION",
|
42 |
+
"ORG": "ORGANIZATION",
|
43 |
+
"NROP": "NRP",
|
44 |
+
"DATE_TIME": "DATE_TIME",
|
45 |
+
}
|
46 |
+
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
supported_language: str = "en",
|
50 |
+
supported_entities: Optional[List[str]] = None,
|
51 |
+
check_label_groups: Optional[Tuple[Set, Set]] = None,
|
52 |
+
context: Optional[List[str]] = None,
|
53 |
+
ner_strength: float = 0.85,
|
54 |
+
):
|
55 |
+
self.ner_strength = ner_strength
|
56 |
+
self.check_label_groups = (
|
57 |
+
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
|
58 |
+
)
|
59 |
+
supported_entities = supported_entities if supported_entities else self.ENTITIES
|
60 |
+
super().__init__(
|
61 |
+
supported_entities=supported_entities,
|
62 |
+
supported_language=supported_language,
|
63 |
+
)
|
64 |
+
|
65 |
+
def load(self) -> None:
|
66 |
+
"""Load the model, not used. Model is loaded during initialization."""
|
67 |
+
pass
|
68 |
+
|
69 |
+
def get_supported_entities(self) -> List[str]:
|
70 |
+
"""
|
71 |
+
Return supported entities by this model.
|
72 |
+
:return: List of the supported entities.
|
73 |
+
"""
|
74 |
+
return self.supported_entities
|
75 |
+
|
76 |
+
def build_spacy_explanation(
|
77 |
+
self, original_score: float, explanation: str
|
78 |
+
) -> AnalysisExplanation:
|
79 |
+
"""
|
80 |
+
Create explanation for why this result was detected.
|
81 |
+
:param original_score: Score given by this recognizer
|
82 |
+
:param explanation: Explanation string
|
83 |
+
:return:
|
84 |
+
"""
|
85 |
+
explanation = AnalysisExplanation(
|
86 |
+
recognizer=self.__class__.__name__,
|
87 |
+
original_score=original_score,
|
88 |
+
textual_explanation=explanation,
|
89 |
+
)
|
90 |
+
return explanation
|
91 |
+
|
92 |
+
def analyze(self, text, entities, nlp_artifacts=None): # noqa D102
|
93 |
+
results = []
|
94 |
+
if not nlp_artifacts:
|
95 |
+
logger.warning("Skipping SpaCy, nlp artifacts not provided...")
|
96 |
+
return results
|
97 |
+
|
98 |
+
ner_entities = nlp_artifacts.entities
|
99 |
+
|
100 |
+
for entity in entities:
|
101 |
+
if entity not in self.supported_entities:
|
102 |
+
continue
|
103 |
+
for ent in ner_entities:
|
104 |
+
if not self.__check_label(entity, ent.label_, self.check_label_groups):
|
105 |
+
continue
|
106 |
+
textual_explanation = self.DEFAULT_EXPLANATION.format(
|
107 |
+
ent.label_)
|
108 |
+
explanation = self.build_spacy_explanation(
|
109 |
+
self.ner_strength, textual_explanation
|
110 |
+
)
|
111 |
+
spacy_result = RecognizerResult(
|
112 |
+
entity_type=entity,
|
113 |
+
start=ent.start_char,
|
114 |
+
end=ent.end_char,
|
115 |
+
score=self.ner_strength,
|
116 |
+
analysis_explanation=explanation,
|
117 |
+
recognition_metadata={
|
118 |
+
RecognizerResult.RECOGNIZER_NAME_KEY: self.name
|
119 |
+
},
|
120 |
+
)
|
121 |
+
results.append(spacy_result)
|
122 |
+
|
123 |
+
return results
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def __check_label(
|
127 |
+
entity: str, label: str, check_label_groups: Tuple[Set, Set]
|
128 |
+
) -> bool:
|
129 |
+
return any(
|
130 |
+
[entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]
|
131 |
+
)
|