Spaces:
Runtime error
Runtime error
File size: 39,144 Bytes
ad54d7a 8e0f2c0 8029b4a ad54d7a 57510bb ad54d7a 57510bb ad54d7a 57510bb ad54d7a 57510bb ad54d7a 57510bb ad54d7a 57510bb ad54d7a 57510bb ad54d7a 57510bb ad54d7a 57510bb ad54d7a 8029b4a ad54d7a 57510bb ad54d7a 57510bb ad54d7a 57510bb ad54d7a 8ddd609 ad54d7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 |
#modified from Github repo: https://github.com/JizhiziLi/P3M
#added inference code for other networks
import torch
import cv2
import argparse
import numpy as np
from tqdm import tqdm
from PIL import Image
from skimage.transform import resize
from torchvision import transforms,models
import os
from models import *
import torch.nn.functional as F
import torch
import torch.nn as nn
import math
from torch.autograd import Variable
import torch.nn.functional as fnn
import glob
import tqdm
from torch.autograd import Variable
from typing import Type, Any, Callable, Union, List, Optional
import logging
import time
from omegaconf import OmegaConf
config = OmegaConf.load("base.yaml")
device = "cpu"
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class TFI(nn.Module):
expansion = 1
def __init__(self, planes,stride=1):
super(TFI, self).__init__()
middle_planes = int(planes/2)
self.transform = conv1x1(planes, middle_planes)
self.conv1 = conv3x3(middle_planes*3, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.stride = stride
def forward(self, input_s_guidance, input_m_decoder, input_m_encoder):
input_s_guidance_transform = self.transform(input_s_guidance)
input_m_decoder_transform = self.transform(input_m_decoder)
input_m_encoder_transform = self.transform(input_m_encoder)
x = torch.cat((input_s_guidance_transform,input_m_decoder_transform,input_m_encoder_transform),1)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
return out
class SBFI(nn.Module):
def __init__(self, planes,stride=1):
super(SBFI, self).__init__()
self.stride = stride
self.transform1 = conv1x1(planes, int(planes/2))
self.transform2 = conv1x1(64, int(planes/2))
self.maxpool = nn.MaxPool2d(2, stride=stride)
self.conv1 = conv3x3(planes, planes, 1)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
def forward(self, input_m_decoder,e0):
input_m_decoder_transform = self.transform1(input_m_decoder)
e0_maxpool = self.maxpool(e0)
e0_transform = self.transform2(e0_maxpool)
x = torch.cat((input_m_decoder_transform,e0_transform),1)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = out+input_m_decoder
return out
class DBFI(nn.Module):
def __init__(self, planes,stride=1):
super(DBFI, self).__init__()
self.stride = stride
self.transform1 = conv1x1(planes, int(planes/2))
self.transform2 = conv1x1(512, int(planes/2))
self.upsample = nn.Upsample(scale_factor=stride, mode='bilinear')
self.conv1 = conv3x3(planes, planes, 1)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, 3, 1)
self.upsample2 = nn.Upsample(scale_factor=int(32/stride), mode='bilinear')
def forward(self, input_s_decoder,e4):
input_s_decoder_transform = self.transform1(input_s_decoder)
e4_transform = self.transform2(e4)
e4_upsample = self.upsample(e4_transform)
x = torch.cat((input_s_decoder_transform,e4_upsample),1)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = out+input_s_decoder
out_side = self.conv2(out)
out_side = self.upsample2(out_side)
return out, out_side
class P3mNet(nn.Module):
def __init__(self):
super().__init__()
self.resnet = resnet34_mp()
############################
### Encoder part - RESNETMP
############################
self.encoder0 = nn.Sequential(
self.resnet.conv1,
self.resnet.bn1,
self.resnet.relu,
)
self.mp0 = self.resnet.maxpool1
self.encoder1 = nn.Sequential(
self.resnet.layer1)
self.mp1 = self.resnet.maxpool2
self.encoder2 = self.resnet.layer2
self.mp2 = self.resnet.maxpool3
self.encoder3 = self.resnet.layer3
self.mp3 = self.resnet.maxpool4
self.encoder4 = self.resnet.layer4
self.mp4 = self.resnet.maxpool5
self.tfi_3 = TFI(256)
self.tfi_2 = TFI(128)
self.tfi_1 = TFI(64)
self.tfi_0 = TFI(64)
self.sbfi_2 = SBFI(128, 8)
self.sbfi_1 = SBFI(64, 4)
self.sbfi_0 = SBFI(64, 2)
self.dbfi_2 = DBFI(128, 4)
self.dbfi_1 = DBFI(64, 8)
self.dbfi_0 = DBFI(64, 16)
##########################
### Decoder part - GLOBAL
##########################
self.decoder4_g = nn.Sequential(
nn.Conv2d(512,512,3,padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512,512,3,padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512,256,3,padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear') )
self.decoder3_g = nn.Sequential(
nn.Conv2d(256,256,3,padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256,256,3,padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256,128,3,padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear') )
self.decoder2_g = nn.Sequential(
nn.Conv2d(128,128,3,padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128,128,3,padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128,64,3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear'))
self.decoder1_g = nn.Sequential(
nn.Conv2d(64,64,3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64,64,3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64,64,3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear'))
self.decoder0_g = nn.Sequential(
nn.Conv2d(64,64,3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64,64,3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64,3,3,padding=1),
nn.Upsample(scale_factor=2, mode='bilinear'))
##########################
### Decoder part - LOCAL
##########################
self.decoder4_l = nn.Sequential(
nn.Conv2d(512,512,3,padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512,512,3,padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512,256,3,padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True))
self.decoder3_l = nn.Sequential(
nn.Conv2d(256,256,3,padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256,256,3,padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256,128,3,padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True))
self.decoder2_l = nn.Sequential(
nn.Conv2d(128,128,3,padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128,128,3,padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128,64,3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True))
self.decoder1_l = nn.Sequential(
nn.Conv2d(64,64,3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64,64,3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64,64,3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True))
self.decoder0_l = nn.Sequential(
nn.Conv2d(64,64,3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64,64,3,padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True))
self.decoder_final_l = nn.Conv2d(64,1,3,padding=1)
def forward(self, input):
##########################
### Encoder part - RESNET
##########################
e0 = self.encoder0(input)
e0p, id0 = self.mp0(e0)
e1p, id1 = self.mp1(e0p)
e1 = self.encoder1(e1p)
e2p, id2 = self.mp2(e1)
e2 = self.encoder2(e2p)
e3p, id3 = self.mp3(e2)
e3 = self.encoder3(e3p)
e4p, id4 = self.mp4(e3)
e4 = self.encoder4(e4p)
###########################
### Decoder part - Global
###########################
d4_g = self.decoder4_g(e4)
d3_g = self.decoder3_g(d4_g)
d2_g, global_sigmoid_side2 = self.dbfi_2(d3_g, e4)
d2_g = self.decoder2_g(d2_g)
d1_g, global_sigmoid_side1 = self.dbfi_1(d2_g, e4)
d1_g = self.decoder1_g(d1_g)
d0_g, global_sigmoid_side0 = self.dbfi_0(d1_g, e4)
d0_g = self.decoder0_g(d0_g)
global_sigmoid = d0_g
###########################
### Decoder part - Local
###########################
d4_l = self.decoder4_l(e4)
d4_l = F.max_unpool2d(d4_l, id4, kernel_size=2, stride=2)
d3_l = self.tfi_3(d4_g, d4_l, e3)
d3_l = self.decoder3_l(d3_l)
d3_l = F.max_unpool2d(d3_l, id3, kernel_size=2, stride=2)
d2_l = self.tfi_2(d3_g, d3_l, e2)
d2_l = self.sbfi_2(d2_l, e0)
d2_l = self.decoder2_l(d2_l)
d2_l = F.max_unpool2d(d2_l, id2, kernel_size=2, stride=2)
d1_l = self.tfi_1(d2_g, d2_l, e1)
d1_l = self.sbfi_1(d1_l, e0)
d1_l = self.decoder1_l(d1_l)
d1_l = F.max_unpool2d(d1_l, id1, kernel_size=2, stride=2)
d0_l = self.tfi_0(d1_g, d1_l, e0p)
d0_l = self.sbfi_0(d0_l, e0)
d0_l = self.decoder0_l(d0_l)
d0_l = F.max_unpool2d(d0_l, id0, kernel_size=2, stride=2)
d0_l = self.decoder_final_l(d0_l)
local_sigmoid = F.sigmoid(d0_l)
##########################
### Fusion net - G/L
##########################
fusion_sigmoid = get_masked_local_from_global(global_sigmoid, local_sigmoid)
return global_sigmoid, local_sigmoid, fusion_sigmoid, global_sigmoid_side2, global_sigmoid_side1, global_sigmoid_side0
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
__constants__ = ['downsample']
def __init__(self, inplanes, planes,stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.attention(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=1, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, return_indices=True)
self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, return_indices=True)
self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, return_indices=True)
self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, return_indices=True)
self.maxpool5 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, return_indices=True)
#pdb.set_trace()
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=1,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=1,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, 1000)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes,stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes,groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x):
x1 = self.conv1(x)
x1 = self.bn1(x1)
x1 = self.relu(x1)
x1, idx1 = self.maxpool1(x1)
x2, idx2 = self.maxpool2(x1)
x2 = self.layer1(x2)
x3, idx3 = self.maxpool3(x2)
x3 = self.layer2(x3)
x4, idx4 = self.maxpool4(x3)
x4 = self.layer3(x4)
x5, idx5 = self.maxpool5(x4)
x5 = self.layer4(x5)
x_cls = self.avgpool(x5)
x_cls = torch.flatten(x_cls, 1)
x_cls = self.fc(x_cls)
return x_cls
def forward(self, x):
return self._forward_impl(x)
def resnet34_mp(**kwargs):
r"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
checkpoint = torch.load("checkpoints/r34mp_pretrained_imagenet.pth.tar")
model.load_state_dict(checkpoint)
return model
##############################
### Training loses for P3M-NET
##############################
def get_crossentropy_loss(gt,pre):
gt_copy = gt.clone()
gt_copy[gt_copy==0] = 0
gt_copy[gt_copy==255] = 2
gt_copy[gt_copy>2] = 1
gt_copy = gt_copy.long()
gt_copy = gt_copy[:,0,:,:]
criterion = nn.CrossEntropyLoss()
entropy_loss = criterion(pre, gt_copy)
return entropy_loss
def get_alpha_loss(predict, alpha, trimap):
weighted = torch.zeros(trimap.shape).to(device)
weighted[trimap == 128] = 1.
alpha_f = alpha / 255.
alpha_f = alpha_f.to(device)
diff = predict - alpha_f
diff = diff * weighted
alpha_loss = torch.sqrt(diff ** 2 + 1e-12)
alpha_loss_weighted = alpha_loss.sum() / (weighted.sum() + 1.)
return alpha_loss_weighted
def get_alpha_loss_whole_img(predict, alpha):
weighted = torch.ones(alpha.shape).to(device)
alpha_f = alpha / 255.
alpha_f = alpha_f.to(device)
diff = predict - alpha_f
alpha_loss = torch.sqrt(diff ** 2 + 1e-12)
alpha_loss = alpha_loss.sum()/(weighted.sum())
return alpha_loss
## Laplacian loss is refer to
## https://gist.github.com/MarcoForte/a07c40a2b721739bb5c5987671aa5270
def build_gauss_kernel(size=5, sigma=1.0, n_channels=1, cuda=False):
if size % 2 != 1:
raise ValueError("kernel size must be uneven")
grid = np.float32(np.mgrid[0:size,0:size].T)
gaussian = lambda x: np.exp((x - size//2)**2/(-2*sigma**2))**2
kernel = np.sum(gaussian(grid), axis=2)
kernel /= np.sum(kernel)
kernel = np.tile(kernel, (n_channels, 1, 1))
kernel = torch.FloatTensor(kernel[:, None, :, :]).to(device)
return Variable(kernel, requires_grad=False)
def conv_gauss(img, kernel):
""" convolve img with a gaussian kernel that has been built with build_gauss_kernel """
n_channels, _, kw, kh = kernel.shape
img = fnn.pad(img, (kw//2, kh//2, kw//2, kh//2), mode='replicate')
return fnn.conv2d(img, kernel, groups=n_channels)
def laplacian_pyramid(img, kernel, max_levels=5):
current = img
pyr = []
for level in range(max_levels):
filtered = conv_gauss(current, kernel)
diff = current - filtered
pyr.append(diff)
current = fnn.avg_pool2d(filtered, 2)
pyr.append(current)
return pyr
def get_laplacian_loss(predict, alpha, trimap):
weighted = torch.zeros(trimap.shape).to(device)
weighted[trimap == 128] = 1.
alpha_f = alpha / 255.
alpha_f = alpha_f.to(device)
alpha_f = alpha_f.clone()*weighted
predict = predict.clone()*weighted
gauss_kernel = build_gauss_kernel(size=5, sigma=1.0, n_channels=1, cuda=True)
pyr_alpha = laplacian_pyramid(alpha_f, gauss_kernel, 5)
pyr_predict = laplacian_pyramid(predict, gauss_kernel, 5)
laplacian_loss_weighted = sum(fnn.l1_loss(a, b) for a, b in zip(pyr_alpha, pyr_predict))
return laplacian_loss_weighted
def get_laplacian_loss_whole_img(predict, alpha):
alpha_f = alpha / 255.
alpha_f = alpha_f.to(device)
gauss_kernel = build_gauss_kernel(size=5, sigma=1.0, n_channels=1, cuda=True)
pyr_alpha = laplacian_pyramid(alpha_f, gauss_kernel, 5)
pyr_predict = laplacian_pyramid(predict, gauss_kernel, 5)
laplacian_loss = sum(fnn.l1_loss(a, b) for a, b in zip(pyr_alpha, pyr_predict))
return laplacian_loss
def get_composition_loss_whole_img(img, alpha, fg, bg, predict):
weighted = torch.ones(alpha.shape).to(device)
predict_3 = torch.cat((predict, predict, predict), 1)
comp = predict_3 * fg + (1. - predict_3) * bg
comp_loss = torch.sqrt((comp - img) ** 2 + 1e-12)
comp_loss = comp_loss.sum()/(weighted.sum())
return comp_loss
##############################
### Test loss for matting
##############################
def calculate_sad_mse_mad(predict_old,alpha,trimap):
predict = np.copy(predict_old)
pixel = float((trimap == 128).sum())
predict[trimap == 255] = 1.
predict[trimap == 0 ] = 0.
sad_diff = np.sum(np.abs(predict - alpha))/1000
if pixel==0:
pixel = trimap.shape[0]*trimap.shape[1]-float((trimap==255).sum())-float((trimap==0).sum())
mse_diff = np.sum((predict - alpha) ** 2)/pixel
mad_diff = np.sum(np.abs(predict - alpha))/pixel
return sad_diff, mse_diff, mad_diff
def calculate_sad_mse_mad_whole_img(predict, alpha):
pixel = predict.shape[0]*predict.shape[1]
sad_diff = np.sum(np.abs(predict - alpha))/1000
mse_diff = np.sum((predict - alpha) ** 2)/pixel
mad_diff = np.sum(np.abs(predict - alpha))/pixel
return sad_diff, mse_diff, mad_diff
def calculate_sad_fgbg(predict, alpha, trimap):
sad_diff = np.abs(predict-alpha)
weight_fg = np.zeros(predict.shape)
weight_bg = np.zeros(predict.shape)
weight_trimap = np.zeros(predict.shape)
weight_fg[trimap==255] = 1.
weight_bg[trimap==0 ] = 1.
weight_trimap[trimap==128 ] = 1.
sad_fg = np.sum(sad_diff*weight_fg)/1000
sad_bg = np.sum(sad_diff*weight_bg)/1000
sad_trimap = np.sum(sad_diff*weight_trimap)/1000
return sad_fg, sad_bg
def compute_gradient_whole_image(pd, gt):
from scipy.ndimage import gaussian_filter
pd_x = gaussian_filter(pd, sigma=1.4, order=[1, 0], output=np.float32)
pd_y = gaussian_filter(pd, sigma=1.4, order=[0, 1], output=np.float32)
gt_x = gaussian_filter(gt, sigma=1.4, order=[1, 0], output=np.float32)
gt_y = gaussian_filter(gt, sigma=1.4, order=[0, 1], output=np.float32)
pd_mag = np.sqrt(pd_x**2 + pd_y**2)
gt_mag = np.sqrt(gt_x**2 + gt_y**2)
error_map = np.square(pd_mag - gt_mag)
loss = np.sum(error_map) / 10
return loss
def compute_connectivity_loss_whole_image(pd, gt, step=0.1):
from scipy.ndimage import morphology
from skimage.measure import label, regionprops
h, w = pd.shape
thresh_steps = np.arange(0, 1.1, step)
l_map = -1 * np.ones((h, w), dtype=np.float32)
lambda_map = np.ones((h, w), dtype=np.float32)
for i in range(1, thresh_steps.size):
pd_th = pd >= thresh_steps[i]
gt_th = gt >= thresh_steps[i]
label_image = label(pd_th & gt_th, connectivity=1)
cc = regionprops(label_image)
size_vec = np.array([c.area for c in cc])
if len(size_vec) == 0:
continue
max_id = np.argmax(size_vec)
coords = cc[max_id].coords
omega = np.zeros((h, w), dtype=np.float32)
omega[coords[:, 0], coords[:, 1]] = 1
flag = (l_map == -1) & (omega == 0)
l_map[flag == 1] = thresh_steps[i-1]
dist_maps = morphology.distance_transform_edt(omega==0)
dist_maps = dist_maps / dist_maps.max()
l_map[l_map == -1] = 1
d_pd = pd - l_map
d_gt = gt - l_map
phi_pd = 1 - d_pd * (d_pd >= 0.15).astype(np.float32)
phi_gt = 1 - d_gt * (d_gt >= 0.15).astype(np.float32)
loss = np.sum(np.abs(phi_pd - phi_gt)) / 1000
return loss
def gen_trimap_from_segmap_e2e(segmap):
trimap = np.argmax(segmap, axis=1)[0]
trimap = trimap.astype(np.int64)
trimap[trimap==1]=128
trimap[trimap==2]=255
return trimap.astype(np.uint8)
def get_masked_local_from_global(global_sigmoid, local_sigmoid):
values, index = torch.max(global_sigmoid,1)
index = index[:,None,:,:].float()
### index <===> [0, 1, 2]
### bg_mask <===> [1, 0, 0]
bg_mask = index.clone()
bg_mask[bg_mask==2]=1
bg_mask = 1- bg_mask
### trimap_mask <===> [0, 1, 0]
trimap_mask = index.clone()
trimap_mask[trimap_mask==2]=0
### fg_mask <===> [0, 0, 1]
fg_mask = index.clone()
fg_mask[fg_mask==1]=0
fg_mask[fg_mask==2]=1
fusion_sigmoid = local_sigmoid*trimap_mask+fg_mask
return fusion_sigmoid
def get_masked_local_from_global_test(global_result, local_result):
weighted_global = np.ones(global_result.shape)
weighted_global[global_result==255] = 0
weighted_global[global_result==0] = 0
fusion_result = global_result*(1.-weighted_global)/255+local_result*weighted_global
return fusion_result
def inference_once( model, scale_img, scale_trimap=None):
pred_list = []
tensor_img = torch.from_numpy(scale_img[:, :, :]).permute(2, 0, 1).to(device)
input_t = tensor_img
input_t = input_t/255.0
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
input_t = normalize(input_t)
input_t = input_t.unsqueeze(0).float()
# pred_global, pred_local, pred_fusion = model(input_t)[:3]
pred_fusion = model(input_t)[:3]
pred_global = pred_fusion
pred_local = pred_fusion
pred_global = pred_global.data.cpu().numpy()
pred_global = gen_trimap_from_segmap_e2e(pred_global)
pred_local = pred_local.data.cpu().numpy()[0,0,:,:]
pred_fusion = pred_fusion.data.cpu().numpy()[0,0,:,:]
return pred_global, pred_local, pred_fusion
# def inference_img( test_choice,model, img):
# h, w, c = img.shape
# new_h = min(config['datasets'].MAX_SIZE_H, h - (h % 32))
# new_w = min(config['datasets'].MAX_SIZE_W, w - (w % 32))
# if test_choice=='HYBRID':
# global_ratio = 1/2
# local_ratio = 1
# resize_h = int(h*global_ratio)
# resize_w = int(w*global_ratio)
# new_h = min(config['datasets'].MAX_SIZE_H, resize_h - (resize_h % 32))
# new_w = min(config['datasets'].MAX_SIZE_W, resize_w - (resize_w % 32))
# scale_img = resize(img,(new_h,new_w))*255.0
# pred_coutour_1, pred_retouching_1, pred_fusion_1 = inference_once( model, scale_img)
# pred_coutour_1 = resize(pred_coutour_1,(h,w))*255.0
# resize_h = int(h*local_ratio)
# resize_w = int(w*local_ratio)
# new_h = min(config['datasets'].MAX_SIZE_H, resize_h - (resize_h % 32))
# new_w = min(config['datasets'].MAX_SIZE_W, resize_w - (resize_w % 32))
# scale_img = resize(img,(new_h,new_w))*255.0
# pred_coutour_2, pred_retouching_2, pred_fusion_2 = inference_once( model, scale_img)
# pred_retouching_2 = resize(pred_retouching_2,(h,w))
# pred_fusion = get_masked_local_from_global_test(pred_coutour_1, pred_retouching_2)
# return pred_fusion
# else:
# resize_h = int(h/2)
# resize_w = int(w/2)
# new_h = min(config['datasets'].MAX_SIZE_H, resize_h - (resize_h % 32))
# new_w = min(config['datasets'].MAX_SIZE_W, resize_w - (resize_w % 32))
# scale_img = resize(img,(new_h,new_w))*255.0
# pred_global, pred_local, pred_fusion = inference_once( model, scale_img)
# pred_local = resize(pred_local,(h,w))
# pred_global = resize(pred_global,(h,w))*255.0
# pred_fusion = resize(pred_fusion,(h,w))
# return pred_fusion
def inference_img(model, img):
h,w,_ = img.shape
# print(img.shape)
if h%8!=0 or w%8!=0:
img=cv2.copyMakeBorder(img, 8-h%8, 0, 8-w%8, 0, cv2.BORDER_REFLECT)
# print(img.shape)
tensor_img = torch.from_numpy(img).permute(2, 0, 1).to(device)
input_t = tensor_img
input_t = input_t/255.0
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
input_t = normalize(input_t)
input_t = input_t.unsqueeze(0).float()
with torch.no_grad():
out=model(input_t)
# print("out",out.shape)
result = out[0][:,-h:,-w:].cpu().numpy()
# print(result.shape)
return result[0]
def test_am2k(model):
############################
# Some initial setting for paths
############################
ORIGINAL_PATH = config['datasets']['am2k']['validation_original']
MASK_PATH = config['datasets']['am2k']['validation_mask']
TRIMAP_PATH = config['datasets']['am2k']['validation_trimap']
img_paths = glob.glob(ORIGINAL_PATH+"/*.jpg")
############################
# Start testing
############################
sad_diffs = 0.
mse_diffs = 0.
mad_diffs = 0.
grad_diffs = 0.
conn_diffs = 0.
sad_trimap_diffs = 0.
mse_trimap_diffs = 0.
mad_trimap_diffs = 0.
sad_fg_diffs = 0.
sad_bg_diffs = 0.
total_number = len(img_paths)
log("===============================")
log(f'====> Start Testing\n\t--Dataset: AM2k\n\t-\n\t--Number: {total_number}')
for img_path in tqdm.tqdm(img_paths):
img_name=(img_path.split("/")[-1])[:-4]
alpha_path = MASK_PATH+img_name+'.png'
trimap_path = TRIMAP_PATH+img_name+'.png'
pil_img = Image.open(img_path)
img = np.array(pil_img)
trimap = np.array(Image.open(trimap_path))
alpha = np.array(Image.open(alpha_path))/255.
img = img[:,:,:3] if img.ndim>2 else img
trimap = trimap[:,:,0] if trimap.ndim>2 else trimap
alpha = alpha[:,:,0] if alpha.ndim>2 else alpha
with torch.no_grad():
# torch.cuda.empty_cache()
predict = inference_img( model, img)
sad_trimap_diff, mse_trimap_diff, mad_trimap_diff = calculate_sad_mse_mad(predict, alpha, trimap)
sad_diff, mse_diff, mad_diff = calculate_sad_mse_mad_whole_img(predict, alpha)
sad_fg_diff, sad_bg_diff = calculate_sad_fgbg(predict, alpha, trimap)
conn_diff = compute_connectivity_loss_whole_image(predict, alpha)
grad_diff = compute_gradient_whole_image(predict, alpha)
log(f"[{img_paths.index(img_path)}/{total_number}]\nImage:{img_name}\nsad:{sad_diff}\nmse:{mse_diff}\nmad:{mad_diff}\nsad_trimap:{sad_trimap_diff}\nmse_trimap:{mse_trimap_diff}\nmad_trimap:{mad_trimap_diff}\nsad_fg:{sad_fg_diff}\nsad_bg:{sad_bg_diff}\nconn:{conn_diff}\ngrad:{grad_diff}\n-----------")
sad_diffs += sad_diff
mse_diffs += mse_diff
mad_diffs += mad_diff
mse_trimap_diffs += mse_trimap_diff
sad_trimap_diffs += sad_trimap_diff
mad_trimap_diffs += mad_trimap_diff
sad_fg_diffs += sad_fg_diff
sad_bg_diffs += sad_bg_diff
conn_diffs += conn_diff
grad_diffs += grad_diff
Image.fromarray(np.uint8(predict*255)).save(f"test/{img_name}.png")
log("===============================")
log(f"Testing numbers: {total_number}")
log("SAD: {}".format(sad_diffs / total_number))
log("MSE: {}".format(mse_diffs / total_number))
log("MAD: {}".format(mad_diffs / total_number))
log("GRAD: {}".format(grad_diffs / total_number))
log("CONN: {}".format(conn_diffs / total_number))
log("SAD TRIMAP: {}".format(sad_trimap_diffs / total_number))
log("MSE TRIMAP: {}".format(mse_trimap_diffs / total_number))
log("MAD TRIMAP: {}".format(mad_trimap_diffs / total_number))
log("SAD FG: {}".format(sad_fg_diffs / total_number))
log("SAD BG: {}".format(sad_bg_diffs / total_number))
return sad_diffs/total_number,mse_diffs/total_number,grad_diffs/total_number
def test_p3m10k(model,dataset_choice, max_image=-1):
############################
# Some initial setting for paths
############################
if dataset_choice == 'P3M_500_P':
val_option = 'VAL500P'
else:
val_option = 'VAL500NP'
ORIGINAL_PATH = config['datasets']['p3m10k']+"/validation/"+config['datasets']['p3m10k_test'][val_option]['ORIGINAL_PATH']
MASK_PATH = config['datasets']['p3m10k']+"/validation/"+config['datasets']['p3m10k_test'][val_option]['MASK_PATH']
TRIMAP_PATH = config['datasets']['p3m10k']+"/validation/"+config['datasets']['p3m10k_test'][val_option]['TRIMAP_PATH']
############################
# Start testing
############################
sad_diffs = 0.
mse_diffs = 0.
mad_diffs = 0.
sad_trimap_diffs = 0.
mse_trimap_diffs = 0.
mad_trimap_diffs = 0.
sad_fg_diffs = 0.
sad_bg_diffs = 0.
conn_diffs = 0.
grad_diffs = 0.
model.eval()
img_paths = glob.glob(ORIGINAL_PATH+"/*.jpg")
if (max_image>1):
img_paths = img_paths[:max_image]
total_number = len(img_paths)
log("===============================")
log(f'====> Start Testing\n\t----Test: {dataset_choice}\n\t--Number: {total_number}')
for img_path in tqdm.tqdm(img_paths):
img_name=(img_path.split("/")[-1])[:-4]
alpha_path = MASK_PATH+img_name+'.png'
trimap_path = TRIMAP_PATH+img_name+'.png'
pil_img = Image.open(img_path)
img = np.array(pil_img)
trimap = np.array(Image.open(trimap_path))
alpha = np.array(Image.open(alpha_path))/255.
img = img[:,:,:3] if img.ndim>2 else img
trimap = trimap[:,:,0] if trimap.ndim>2 else trimap
alpha = alpha[:,:,0] if alpha.ndim>2 else alpha
with torch.no_grad():
# torch.cuda.empty_cache()
start = time.time()
predict = inference_img( model, img) #HYBRID show less accuracy
# tensorimg=transforms.ToTensor()(pil_img)
# input_img=transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(tensorimg)
# predict = model(input_img.unsqueeze(0).to(device))[0][0].detach().cpu().numpy()
# if predict.shape!=(pil_img.height,pil_img.width):
# print("resize for ",img_path)
# predict = resize(predict,(pil_img.height,pil_img.width))
sad_trimap_diff, mse_trimap_diff, mad_trimap_diff = calculate_sad_mse_mad(predict, alpha, trimap)
sad_diff, mse_diff, mad_diff = calculate_sad_mse_mad_whole_img(predict, alpha)
sad_fg_diff, sad_bg_diff = calculate_sad_fgbg(predict, alpha, trimap)
conn_diff = compute_connectivity_loss_whole_image(predict, alpha)
grad_diff = compute_gradient_whole_image(predict, alpha)
log(f"[{img_paths.index(img_path)}/{total_number}]\nImage:{img_name}\nsad:{sad_diff}\nmse:{mse_diff}\nmad:{mad_diff}\nconn:{conn_diff}\ngrad:{grad_diff}\n-----------")
sad_diffs += sad_diff
mse_diffs += mse_diff
mad_diffs += mad_diff
mse_trimap_diffs += mse_trimap_diff
sad_trimap_diffs += sad_trimap_diff
mad_trimap_diffs += mad_trimap_diff
sad_fg_diffs += sad_fg_diff
sad_bg_diffs += sad_bg_diff
conn_diffs += conn_diff
grad_diffs += grad_diff
Image.fromarray(np.uint8(predict*255)).save(f"test/{img_name}.png")
log("===============================")
log(f"Testing numbers: {total_number}")
log("SAD: {}".format(sad_diffs / total_number))
log("MSE: {}".format(mse_diffs / total_number))
log("MAD: {}".format(mad_diffs / total_number))
log("SAD TRIMAP: {}".format(sad_trimap_diffs / total_number))
log("MSE TRIMAP: {}".format(mse_trimap_diffs / total_number))
log("MAD TRIMAP: {}".format(mad_trimap_diffs / total_number))
log("SAD FG: {}".format(sad_fg_diffs / total_number))
log("SAD BG: {}".format(sad_bg_diffs / total_number))
log("CONN: {}".format(conn_diffs / total_number))
log("GRAD: {}".format(grad_diffs / total_number))
return sad_diffs/total_number,mse_diffs/total_number,grad_diffs/total_number
def log(str):
print(str)
logging.info(str)
if __name__ == '__main__':
print('*********************************')
config = OmegaConf.load("base.yaml")
config=OmegaConf.merge(config,OmegaConf.from_cli())
print(config)
model = MaskForm()
model = model.to(device)
checkpoint = f"{config.checkpoint_dir}/{config.checkpoint}"
state_dict = torch.load(checkpoint, map_location=f'{device}')
print("loaded",checkpoint)
model.load_state_dict(state_dict)
model.eval()
logging.basicConfig(filename=f'report/{config.checkpoint.replace("/","--")}.report', encoding='utf-8',filemode='w', level=logging.INFO)
# ckpt = torch.load("checkpoints/p3mnet_pretrained_on_p3m10k.pth")
# model.load_state_dict(ckpt['state_dict'], strict=True)
# model = model.cuda()
if config.dataset_to_use =="AM2K":
test_am2k(model)
else:
for dataset_choice in ['P3M_500_P','P3M_500_NP']:
test_p3m10k(model,dataset_choice)
|