File size: 17,414 Bytes
ad54d7a
 
 
 
 
 
 
 
 
 
8029b4a
ad54d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8029b4a
ad54d7a
8029b4a
ad54d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8029b4a
 
ad54d7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import cv2
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from typing import List
from itertools import chain

from transformers import SegformerForSemanticSegmentation,Mask2FormerForUniversalSegmentation
device='cpu'
class EncoderDecoder(nn.Module):
    def __init__(
        self,
        encoder,
        decoder,
        prefix=nn.Conv2d(3, 3, kernel_size=3, padding=1, bias=True),
    ):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.prefix = prefix

    def forward(self, x):
        if self.prefix is not None:
            x = self.prefix(x)
        x = self.encoder(x)["hidden_states"] #transformers
        return self.decoder(x)
    

def conv2d_relu(input_filters,output_filters,kernel_size=3,  bias=True):
    return nn.Sequential(
        nn.Conv2d(input_filters, output_filters, kernel_size=kernel_size, padding=kernel_size//2, bias=bias),
        nn.LeakyReLU(0.2, inplace=True),
        nn.BatchNorm2d(output_filters)
    )

def up_and_add(x, y):
    return F.interpolate(x, size=(y.size(2), y.size(3)), mode='bilinear', align_corners=True) + y

class FPN_fuse(nn.Module):
    def __init__(self, feature_channels=[256, 512, 1024, 2048], fpn_out=256):
        super(FPN_fuse, self).__init__()
        assert feature_channels[0] == fpn_out
        self.conv1x1 = nn.ModuleList([nn.Conv2d(ft_size, fpn_out, kernel_size=1)
                                    for ft_size in feature_channels[1:]])
        self.smooth_conv =  nn.ModuleList([nn.Conv2d(fpn_out, fpn_out, kernel_size=3, padding=1)] 
                                    * (len(feature_channels)-1))
        self.conv_fusion = nn.Sequential(
            nn.Conv2d(2*fpn_out, fpn_out, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(fpn_out),
            nn.ReLU(inplace=True),
        )

    def forward(self, features):
        
        features[:-1] = [conv1x1(feature) for feature, conv1x1 in zip(features[:-1], self.conv1x1)]##
        feature=up_and_add(self.smooth_conv[0](features[0]),features[1])
        feature=up_and_add(self.smooth_conv[1](feature),features[2])
        feature=up_and_add(self.smooth_conv[2](feature),features[3])


        H, W = features[-1].size(2), features[-1].size(3)
        x = [feature,features[-1]]
        x = [F.interpolate(x_el, size=(H, W), mode='bilinear', align_corners=True) for x_el in x]

        x = self.conv_fusion(torch.cat(x, dim=1))
        #x = F.interpolate(x, size=(H*4, W*4), mode='bilinear', align_corners=True) 
        return x

class PSPModule(nn.Module):
    # In the original inmplementation they use precise RoI pooling 
    # Instead of using adaptative average pooling
    def __init__(self, in_channels, bin_sizes=[1, 2, 4, 6]):
        super(PSPModule, self).__init__()
        out_channels = in_channels // len(bin_sizes)
        self.stages = nn.ModuleList([self._make_stages(in_channels, out_channels, b_s) 
                                                        for b_s in bin_sizes])
        self.bottleneck = nn.Sequential(
            nn.Conv2d(in_channels+(out_channels * len(bin_sizes)), in_channels, 
                                    kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True),
            nn.Dropout2d(0.1)
        )

    def _make_stages(self, in_channels, out_channels, bin_sz):
        prior = nn.AdaptiveAvgPool2d(output_size=bin_sz)
        conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        bn = nn.BatchNorm2d(out_channels)
        relu = nn.ReLU(inplace=True)
        return nn.Sequential(prior, conv, bn, relu)
    
    def forward(self, features):
        h, w = features.size()[2], features.size()[3]
        pyramids = [features]
        pyramids.extend([F.interpolate(stage(features), size=(h, w), mode='bilinear', 
                                        align_corners=True) for stage in self.stages])
        output = self.bottleneck(torch.cat(pyramids, dim=1))
        return output
class UperNet_swin(nn.Module):
    # Implementing only the object path
    def __init__(self, backbone,pretrained=True):
        super(UperNet_swin, self).__init__()


        self.backbone = backbone
        feature_channels = [192,384,768,768]
        self.PPN = PSPModule(feature_channels[-1])
        self.FPN = FPN_fuse(feature_channels, fpn_out=feature_channels[0])
        self.head = nn.Conv2d(feature_channels[0], 1, kernel_size=3, padding=1)



    def forward(self, x):
        input_size = (x.size()[2], x.size()[3])
        features = self.backbone(x)["hidden_states"]
        features[-1] = self.PPN(features[-1])
        x = self.head(self.FPN(features))

        x = F.interpolate(x, size=input_size, mode='bilinear')
        return x

    def get_backbone_params(self):
        return self.backbone.parameters()

    def get_decoder_params(self):
        return chain(self.PPN.parameters(), self.FPN.parameters(), self.head.parameters())
    
class UnetDecoder(nn.Module):
    def __init__(
        self,
        encoder_channels= (3,192,384,768,768),
        decoder_channels=(512,256,128,64),
        n_blocks=4,
        use_batchnorm=True,
        attention_type=None,
        center=False,
    ):
        super().__init__()

        if n_blocks != len(decoder_channels):
            raise ValueError(
                "Model depth is {}, but you provide `decoder_channels` for {} blocks.".format(
                    n_blocks, len(decoder_channels)
                )
            )

        # remove first skip with same spatial resolution
        encoder_channels = encoder_channels[1:]
        # reverse channels to start from head of encoder
        encoder_channels = encoder_channels[::-1]

        # computing blocks input and output channels
        head_channels = encoder_channels[0]
        in_channels = [head_channels] + list(decoder_channels[:-1])
        skip_channels = list(encoder_channels[1:]) + [0]

        out_channels = decoder_channels

        if center:
            self.center = CenterBlock(head_channels, head_channels, use_batchnorm=use_batchnorm)
        else:
            self.center = nn.Identity()

        # combine decoder keyword arguments
        kwargs = dict(use_batchnorm=use_batchnorm, attention_type=attention_type)
        blocks = [
            DecoderBlock(in_ch, skip_ch, out_ch, **kwargs)
            for in_ch, skip_ch, out_ch in zip(in_channels, skip_channels, out_channels)
        ]
        self.blocks = nn.ModuleList(blocks)
        upscale_factor=4
        self.matting_head = nn.Sequential(
            nn.Conv2d(64,1, kernel_size=3, padding=1),
            nn.ReLU(),                                         
            nn.UpsamplingBilinear2d(scale_factor=upscale_factor),
)

    def preprocess_features(self,x):
        features=[]
        for out_tensor in x:
            bs,n,f=out_tensor.size()
            h = int(n**0.5)
            feature = out_tensor.view(-1,h,h,f).permute(0, 3, 1, 2).contiguous()
            features.append(feature)
        return features 

    def forward(self, features):
        features = features[1:]  # remove first skip with same spatial resolution
        features = features[::-1]  # reverse channels to start from head of encoder

        features = self.preprocess_features(features)

        head = features[0]
        skips = features[1:]

        x = self.center(head)
        for i, decoder_block in enumerate(self.blocks):
            skip = skips[i] if i < len(skips) else None
            x = decoder_block(x, skip)
            #y_i = self.upsample1(y_i)
        #hypercol = torch.cat([y0,y1,y2,y3,y4], dim=1)
        x = self.matting_head(x)
        x=1-nn.ReLU()(1-x)
        return x


class SegmentationHead(nn.Sequential):
    def __init__(self, in_channels, out_channels, kernel_size=3, upsampling=1):
        conv2d = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2)
        upsampling = nn.UpsamplingBilinear2d(scale_factor=upsampling) if upsampling > 1 else nn.Identity()
        super().__init__(conv2d, upsampling)


class DecoderBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        skip_channels,
        out_channels,
        use_batchnorm=True,
        attention_type=None,
    ):
        super().__init__()
        self.conv1 = conv2d_relu(
            in_channels + skip_channels,
            out_channels,
            kernel_size=3
        )
        self.conv2 = conv2d_relu(
            out_channels,
            out_channels,
            kernel_size=3,
        )
        self.in_channels=in_channels
        self.out_channels = out_channels
        self.skip_channels = skip_channels
    def forward(self, x, skip=None):
        if skip is None:
            x = F.interpolate(x, scale_factor=2, mode="nearest")
        else:
            if x.shape[-1]!=skip.shape[-1]:
                x = F.interpolate(x, scale_factor=2, mode="nearest")
        if skip is not None:
            #print(x.shape,skip.shape)
            x = torch.cat([x, skip], dim=1)
        x = self.conv1(x)
        x = self.conv2(x)
        return x


class CenterBlock(nn.Sequential):
    def __init__(self, in_channels, out_channels):
        conv1 = conv2d_relu(
            in_channels,
            out_channels,
            kernel_size=3,
        )
        conv2 = conv2d_relu(
            out_channels,
            out_channels,
            kernel_size=3,
        )
        super().__init__(conv1, conv2)



class SegForm(nn.Module):
    def __init__(self):
        super(SegForm, self).__init__()
#         configuration = SegformerConfig.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
#         configuration.num_labels = 1 ## set output as 1 
#         self.model = SegformerForSemanticSegmentation(config=configuration)

        self.model =  SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b0", num_labels=1, ignore_mismatched_sizes=True
        )
    def forward(self, image):
        img_segs = self.model(image)  
        upsampled_logits = nn.functional.interpolate(img_segs.logits,
                scale_factor=4,
                mode='nearest',
               )
        return upsampled_logits
 

class StyleMatte(nn.Module):
    def __init__(self):
        super(StyleMatte, self).__init__()
#         configuration = SegformerConfig.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
#         configuration.num_labels = 1 ## set output as 1 
        self.fpn = FPN_fuse(feature_channels=[256, 256, 256, 256],fpn_out=256)
        self.pixel_decoder =  Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-tiny-coco-instance").base_model.pixel_level_module
        self.fgf = FastGuidedFilter()
        self.conv = nn.Conv2d(256,1,kernel_size=3,padding=1)
        # self.mean =  torch.Tensor([0.43216, 0.394666, 0.37645]).float().view(-1, 1, 1)
        # self.register_buffer('image_net_mean', self.mean)
        # self.std = torch.Tensor([0.22803, 0.22145, 0.216989]).float().view(-1, 1, 1)
        # self.register_buffer('image_net_std', self.std)
    def forward(self, image, normalize=False):
        # if normalize:
        #     image.sub_(self.get_buffer("image_net_mean")).div_(self.get_buffer("image_net_std"))
        
        decoder_out = self.pixel_decoder(image)  
        decoder_states=list(decoder_out.decoder_hidden_states)
        decoder_states.append(decoder_out.decoder_last_hidden_state)    
        out_pure=self.fpn(decoder_states)
        
        image_lr=nn.functional.interpolate(image.mean(1, keepdim=True),
                scale_factor=0.25,
                mode='bicubic',
                align_corners=True
               )
        out = self.conv(out_pure)
        out = self.fgf(image_lr,out,image.mean(1, keepdim=True))#.clip(0,1)
        # out = nn.Sigmoid()(out)
        # out =  nn.functional.interpolate(out,
        #                     scale_factor=4,
        #                     mode='bicubic',
        #                     align_corners=True
        #                 )
        
        return torch.sigmoid(out)

    def get_training_params(self):
        return list(self.fpn.parameters())+list(self.conv.parameters())#+list(self.fgf.parameters())
    
class GuidedFilter(nn.Module):
    def __init__(self, r, eps=1e-8):
        super(GuidedFilter, self).__init__()

        self.r = r
        self.eps = eps
        self.boxfilter = BoxFilter(r)


    def forward(self, x, y):
        n_x, c_x, h_x, w_x = x.size()
        n_y, c_y, h_y, w_y = y.size()

        assert n_x == n_y
        assert c_x == 1 or c_x == c_y
        assert h_x == h_y and w_x == w_y
        assert h_x > 2 * self.r + 1 and w_x > 2 * self.r + 1

        # N
        N = self.boxfilter((x.data.new().resize_((1, 1, h_x, w_x)).fill_(1.0)))

        # mean_x
        mean_x = self.boxfilter(x) / N
        # mean_y
        mean_y = self.boxfilter(y) / N
        # cov_xy
        cov_xy = self.boxfilter(x * y) / N - mean_x * mean_y
        # var_x
        var_x = self.boxfilter(x * x) / N - mean_x * mean_x

        # A
        A = cov_xy / (var_x + self.eps)
        # b
        b = mean_y - A * mean_x

        # mean_A; mean_b
        mean_A = self.boxfilter(A) / N
        mean_b = self.boxfilter(b) / N

        return mean_A * x + mean_b
class FastGuidedFilter(nn.Module):
    def __init__(self, r=1, eps=1e-8):
        super(FastGuidedFilter, self).__init__()

        self.r = r
        self.eps = eps
        self.boxfilter = BoxFilter(r)


    def forward(self, lr_x, lr_y, hr_x):
        n_lrx, c_lrx, h_lrx, w_lrx = lr_x.size()
        n_lry, c_lry, h_lry, w_lry = lr_y.size()
        n_hrx, c_hrx, h_hrx, w_hrx = hr_x.size()

        assert n_lrx == n_lry and n_lry == n_hrx
        assert c_lrx == c_hrx and (c_lrx == 1 or c_lrx == c_lry)
        assert h_lrx == h_lry and w_lrx == w_lry
        assert h_lrx > 2*self.r+1 and w_lrx > 2*self.r+1

        ## N
        N = self.boxfilter(lr_x.new().resize_((1, 1, h_lrx, w_lrx)).fill_(1.0))

        ## mean_x
        mean_x = self.boxfilter(lr_x) / N
        ## mean_y
        mean_y = self.boxfilter(lr_y) / N
        ## cov_xy
        cov_xy = self.boxfilter(lr_x * lr_y) / N - mean_x * mean_y
        ## var_x
        var_x = self.boxfilter(lr_x * lr_x) / N - mean_x * mean_x

        ## A
        A = cov_xy / (var_x + self.eps)
        ## b
        b = mean_y - A * mean_x

        ## mean_A; mean_b
        mean_A = F.interpolate(A, (h_hrx, w_hrx), mode='bilinear', align_corners=True)
        mean_b = F.interpolate(b, (h_hrx, w_hrx), mode='bilinear', align_corners=True)

        return mean_A*hr_x+mean_b
class DeepGuidedFilterRefiner(nn.Module):
    def __init__(self, hid_channels=16):
        super().__init__()
        self.box_filter = nn.Conv2d(4, 4, kernel_size=3, padding=1, bias=False, groups=4)
        self.box_filter.weight.data[...] = 1 / 9
        self.conv = nn.Sequential(
            nn.Conv2d(4 * 2 + hid_channels, hid_channels, kernel_size=1, bias=False),
            nn.BatchNorm2d(hid_channels),
            nn.ReLU(True),
            nn.Conv2d(hid_channels, hid_channels, kernel_size=1, bias=False),
            nn.BatchNorm2d(hid_channels),
            nn.ReLU(True),
            nn.Conv2d(hid_channels, 4, kernel_size=1, bias=True)
        )
        
    def forward(self, fine_src, base_src, base_fgr, base_pha, base_hid):
        fine_x = torch.cat([fine_src, fine_src.mean(1, keepdim=True)], dim=1)
        base_x = torch.cat([base_src, base_src.mean(1, keepdim=True)], dim=1)
        base_y = torch.cat([base_fgr, base_pha], dim=1)
        
        mean_x = self.box_filter(base_x)
        mean_y = self.box_filter(base_y)
        cov_xy = self.box_filter(base_x * base_y) - mean_x * mean_y
        var_x  = self.box_filter(base_x * base_x) - mean_x * mean_x
        
        A = self.conv(torch.cat([cov_xy, var_x, base_hid], dim=1))
        b = mean_y - A * mean_x
        
        H, W = fine_src.shape[2:]
        A = F.interpolate(A, (H, W), mode='bilinear', align_corners=False)
        b = F.interpolate(b, (H, W), mode='bilinear', align_corners=False)
        
        out = A * fine_x + b
        fgr, pha = out.split([3, 1], dim=1)
        return fgr, pha
    
def diff_x(input, r):
    assert input.dim() == 4

    left   = input[:, :,         r:2 * r + 1]
    middle = input[:, :, 2 * r + 1:         ] - input[:, :,           :-2 * r - 1]
    right  = input[:, :,        -1:         ] - input[:, :, -2 * r - 1:    -r - 1]

    output = torch.cat([left, middle, right], dim=2)

    return output

def diff_y(input, r):
    assert input.dim() == 4

    left   = input[:, :, :,         r:2 * r + 1]
    middle = input[:, :, :, 2 * r + 1:         ] - input[:, :, :,           :-2 * r - 1]
    right  = input[:, :, :,        -1:         ] - input[:, :, :, -2 * r - 1:    -r - 1]

    output = torch.cat([left, middle, right], dim=3)

    return output

class BoxFilter(nn.Module):
    def __init__(self, r):
        super(BoxFilter, self).__init__()

        self.r = r

    def forward(self, x):
        assert x.dim() == 4

        return diff_y(diff_x(x.cumsum(dim=2), self.r).cumsum(dim=3), self.r)
    
if __name__ == '__main__':
    model = StyleMatte().to(device)
    out=model(torch.randn(1,3,640,480).to(devuce))
    print(out.shape)