Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoTokenizer, T5ForConditionalGeneration | |
model_name = "allenai/t5-small-squad2-question-generation" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def load_model(model_name): | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
return model | |
model = load_model(model_name) | |
def run_model(input_string, **generator_args): | |
input_ids = tokenizer.encode(input_string, return_tensors="pt") | |
res = model.generate(input_ids, **generator_args) | |
output = tokenizer.batch_decode(res, skip_special_tokens=True) | |
print(output) | |
return output | |
default_value = "Nicejob has increased our revenue 80% since signing up" | |
#prompts | |
st.title("Question Generation") | |
st.write("Placeholder for some other texts, like instructions...") | |
sent = st.text_area("Text", default_value, height = 100) | |
max_length = st.sidebar.slider("Max Length", min_value = 10, max_value=150,value=80,step=5) | |
temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05) | |
num_return_sequences = st.sidebar.slider("Num Return Sequences", min_value = 1, max_value=10, value = 2) | |
num_beams = st.sidebar.slider("Num Beams", min_value = 1, max_value=10, value = 4) | |
top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=100, value = 90) | |
top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9) | |
output_sequences = run_model(sent, max_length=max_length,num_return_sequences=num_return_sequences, | |
num_beams=num_beams, | |
temperature=temperature, top_k=top_k, top_p=top_p) | |
st.write(output_sequences) |