import streamlit as st
import streamlit.components.v1 as components
import os
import base64
import glob
import io
import json
import mistune
import pytz
import math
import requests
import sys
import time
import re
import textract
import zipfile
import random
import httpx # add 11/13/23
import asyncio
from openai import OpenAI
#from openai import AsyncOpenAI
from datetime import datetime
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from templates import css, bot_template, user_template
from io import BytesIO
from contextlib import redirect_stdout
# code import tests
import seaborn
import plotly
import vega_datasets
import bokeh
import holoviews
import plotnine
import graphviz
import tensorflow
import torch
# set page config once
st.set_page_config(page_title="Python AI Pair Programmer", layout="wide")
# UI for sidebar controls
should_save = st.sidebar.checkbox("πΎ Save", value=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
with st.expander("Settings π§ πΎ", expanded=True):
# File type for output, model choice
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
# Define a context dictionary to maintain the state between exec calls
context = {}
def create_file(filename, prompt, response, should_save=True):
if not should_save:
return
# Extract base filename without extension
base_filename, ext = os.path.splitext(filename)
# Initialize the combined content
combined_content = ""
# Add Prompt with markdown title and emoji
combined_content += "# Prompt π\n" + prompt + "\n\n"
# Add Response with markdown title and emoji
combined_content += "# Response π¬\n" + response + "\n\n"
# Check for code blocks in the response
resources = re.findall(r"```([\s\S]*?)```", response)
for resource in resources:
# Check if the resource contains Python code
if "python" in resource.lower():
# Remove the 'python' keyword from the code block
cleaned_code = re.sub(r'^\s*python', '', resource, flags=re.IGNORECASE | re.MULTILINE)
# Add Code Results title with markdown and emoji
combined_content += "# Code Results π\n"
# Redirect standard output to capture it
original_stdout = sys.stdout
sys.stdout = io.StringIO()
# Execute the cleaned Python code within the context
try:
exec(cleaned_code, context)
code_output = sys.stdout.getvalue()
combined_content += f"```\n{code_output}\n```\n\n"
realtimeEvalResponse = "# Code Results π\n" + "```" + code_output + "```\n\n"
st.code(realtimeEvalResponse)
except Exception as e:
combined_content += f"```python\nError executing Python code: {e}\n```\n\n"
# Restore the original standard output
sys.stdout = original_stdout
else:
# Add non-Python resources with markdown and emoji
combined_content += "# Resource π οΈ\n" + "```" + resource + "```\n\n"
# Save the combined content to a Markdown file
if should_save:
with open(f"{base_filename}.md", 'w') as file:
file.write(combined_content)
st.code(combined_content)
# Create a Base64 encoded link for the file
with open(f"{base_filename}.md", 'rb') as file:
encoded_file = base64.b64encode(file.read()).decode()
href = f'Download File π'
st.markdown(href, unsafe_allow_html=True)
# Read it aloud
def readitaloud(result):
documentHTML5='''
Read It Aloud
π Read It Aloud
'''
components.html(documentHTML5, width=800, height=300)
#return result
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# Chat and Chat with files
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a python script writer.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(document_section)>0:
conversation.append({'role': 'assistant', 'content': document_section})
start_time = time.time()
report = []
res_box = st.empty()
collected_chunks = []
collected_messages = []
key = os.getenv('OPENAI_API_KEY')
client = OpenAI(
api_key= os.getenv('OPENAI_API_KEY')
)
stream = client.chat.completions.create(
model='gpt-3.5-turbo',
messages=conversation,
stream=True,
)
all_content = "" # Initialize an empty string to hold all content
for part in stream:
chunk_message = (part.choices[0].delta.content or "")
collected_messages.append(chunk_message) # save the message
content=part.choices[0].delta.content
try:
if len(content) > 0:
report.append(content)
all_content += content
result = "".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write(' ')
full_reply_content = all_content
st.write("Elapsed time:")
st.write(time.time() - start_time)
filename = generate_filename(full_reply_content, choice)
create_file(filename, prompt, full_reply_content, should_save)
readitaloud(full_reply_content)
return full_reply_content
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(file_content)>0:
conversation.append({'role': 'assistant', 'content': file_content})
client = OpenAI(
api_key= os.getenv('OPENAI_API_KEY')
)
response = client.chat.completions.create(model=model_choice, messages=conversation)
return response['choices'][0]['message']['content']
def link_button_with_emoji(url, title, emoji_summary):
emojis = ["π", "π₯", "π‘οΈ", "π©Ί", "π¬", "π", "π§ͺ", "π¨ββοΈ", "π©ββοΈ"]
random_emoji = random.choice(emojis)
st.markdown(f"[{random_emoji} {emoji_summary} - {title}]({url})")
python_parts = {
"Syntax": {"emoji": "βοΈ", "details": "Variables, Comments, Printing"},
"Data Types": {"emoji": "π", "details": "Numbers, Strings, Lists, Tuples, Sets, Dictionaries"},
"Control Structures": {"emoji": "π", "details": "If, Elif, Else, Loops, Break, Continue"},
"Functions": {"emoji": "π§", "details": "Defining, Calling, Parameters, Return Values"},
"Classes": {"emoji": "ποΈ", "details": "Creating, Inheritance, Methods, Properties"},
"API Interaction": {"emoji": "π", "details": "Requests, JSON Parsing, HTTP Methods"},
"Data Visualization Libraries1": {"emoji": "π", "details": "matplotlib"},
"Data Visualization Libraries2": {"emoji": "π", "details": "seaborn"},
"Data Visualization Libraries3": {"emoji": "π", "details": "plotly"},
"Data Visualization Libraries4": {"emoji": "π", "details": "altair"},
"Data Visualization Libraries5": {"emoji": "π", "details": "bokeh"},
"Data Visualization Libraries6": {"emoji": "π", "details": "pydeck"},
"Data Visualization Libraries7": {"emoji": "π", "details": "holoviews"},
"Data Visualization Libraries8": {"emoji": "π", "details": "plotnine"},
"Data Visualization Libraries9": {"emoji": "π", "details": "graphviz"},
"Error Handling": {"emoji": "β οΈ", "details": "Try, Except, Finally, Raising"},
"Scientific & Data Analysis Libraries": {"emoji": "π§ͺ", "details": "Numpy, Pandas, Scikit-Learn, TensorFlow, SciPy, Pillow"},
"Advanced Concepts": {"emoji": "π§ ", "details": "Decorators, Generators, Context Managers, Metaclasses, Asynchronous Programming"},
"Web & Network Libraries": {"emoji": "πΈοΈ", "details": "Flask, Django, Requests, BeautifulSoup, HTTPX, Asyncio"},
"Streamlit & Extensions1": {"emoji": "π‘", "details": "Streamlit"},
"Streamlit & Extensions2": {"emoji": "π‘", "details": "Streamlit-AgGrid"},
"Streamlit & Extensions3": {"emoji": "π‘", "details": "Streamlit-Folium"},
"Streamlit & Extensions4": {"emoji": "π‘", "details": "Streamlit-Pandas-Profiling"},
"Streamlit & Extensions5": {"emoji": "π‘", "details": "Streamlit-Vega-Lite, Gradio"},
"Gradio": {"emoji": "π‘", "details": "gradio"},
"File Handling & Serialization": {"emoji": "π", "details": "PyPDF2, Pytz, Json, Base64, Zipfile, Random, Glob, IO"},
"Machine Learning & AI": {"emoji": "π€", "details": "OpenAI, LangChain, HuggingFace"},
"Text & Data Extraction": {"emoji": "π", "details": "TikToken, Textract, SQLAlchemy, Pillow"},
"XML & Collections Libraries": {"emoji": "π", "details": "XML, Collections"},
"Top PyPI Libraries1": {"emoji": "π", "details": "Requests, Pillow, SQLAlchemy, Flask, Django, SciPy, Beautiful Soup, PyTest, PyGame, Twisted"},
"Top PyPI Libraries2": {"emoji": "π", "details": "numpy, pandas, matplotlib, requests, beautifulsoup4"},
"Top PyPI Libraries3": {"emoji": "π", "details": "langchain, openai, PyPDF2, pytz"},
"Top PyPI Libraries4": {"emoji": "π", "details": "streamlit, audio_recorder_streamlit, gradio"},
"Top PyPI Libraries5": {"emoji": "π", "details": "tiktoken, textract, glob, io"},
"Top PyPI Libraries6": {"emoji": "π", "details": "matplotlib, seaborn, plotly, altair, bokeh, pydeck"},
"Top PyPI Libraries7": {"emoji": "π", "details": "streamlit, streamlit-aggrid, streamlit-folium, streamlit-pandas-profiling, streamlit-vega-lite"},
"Top PyPI Libraries8": {"emoji": "π", "details": "holoviews, plotnine, graphviz"},
"Top PyPI Libraries9": {"emoji": "π", "details": "json, base64, zipfile, random"},
"Top PyPI Libraries10": {"emoji": "π", "details": "httpx, asyncio, xml, collections, huggingface "}
}
response_placeholders = {}
example_placeholders = {}
def display_python_parts_old2():
st.title("Python Interactive Learning Platform")
for part, content in python_parts.items():
with st.expander(f"{content['emoji']} {part} - {content['details']}", expanded=False):
if st.button(f"Show Example for {part}", key=f"example_{part}"):
example = "Write short python script examples with mock data in python list dictionary for inputs for " + part
example_placeholders[part] = example
st.code(example_placeholders[part], language="python")
response = chat_with_model(f'Write python script with short code examples for: {content["details"]}', part)
response_placeholders[part] = response
st.write(f"#### {content['emoji']} {part} Example")
st.code(response_placeholders[part], language="python")
if st.button(f"Take Quiz on {part}", key=f"quiz_{part}"):
quiz = "Write Python script quiz examples with mock static data inputs for " + part
response = chat_with_model(f'Write python code blocks for quiz program: {quiz}', part)
response_placeholders[part] = response
st.write(f"#### {content['emoji']} {part} Quiz")
st.code(response_placeholders[part], language="python")
prompt = f"Write python script with a few advanced coding examples using mock data input for {content['details']}"
if st.button(f"Explore {part}", key=part):
response = chat_with_model(prompt, part)
response_placeholders[part] = response
st.write(f"#### {content['emoji']} {part} Details")
st.code(response_placeholders[part], language="python")
def display_python_parts():
st.title("Python Interactive Learning Platform")
for part, content in python_parts.items():
with st.expander(f"{content['emoji']} {part} - {content['details']}", expanded=False):
if st.button(f"Show Example for {part}", key=f"example_{part}"):
example = "Python script example with mock example inputs for " + part
example_placeholders[part] = example
st.code(example_placeholders[part], language="python")
response = chat_with_model('Create detailed advanced python script code examples for:' + example_placeholders[part], part)
if st.button(f"Take Quiz on {part}", key=f"quiz_{part}"):
quiz = "Python script quiz example with mock example inputs for " + part
response = chat_with_model(quiz, part)
prompt = f"Learn about advanced coding examples using mock example inputs for {content['details']}"
if st.button(f"Explore {part}", key=part):
response = chat_with_model(prompt, part)
response_placeholders[part] = response
if part in response_placeholders:
st.markdown(f"**Response:** {response_placeholders[part]}")
def add_paper_buttons_and_links():
page = st.sidebar.radio("Choose a page:", ["Python Pair Programmer"])
if page == "Python Pair Programmer":
display_python_parts()
col1, col2, col3, col4 = st.columns(4)
with col1:
with st.expander("MemGPT π§ πΎ", expanded=False):
link_button_with_emoji("https://arxiv.org/abs/2310.08560", "MemGPT", "π§ πΎ Memory OS")
outline_memgpt = "Memory Hierarchy, Context Paging, Self-directed Memory Updates, Memory Editing, Memory Retrieval, Preprompt Instructions, Semantic Memory, Episodic Memory, Emotional Contextual Understanding"
if st.button("Discuss MemGPT Features"):
chat_with_model("Discuss the key features of MemGPT: " + outline_memgpt, "MemGPT")
with col2:
with st.expander("AutoGen π€π", expanded=False):
link_button_with_emoji("https://arxiv.org/abs/2308.08155", "AutoGen", "π€π Multi-Agent LLM")
outline_autogen = "Cooperative Conversations, Combining Capabilities, Complex Task Solving, Divergent Thinking, Factuality, Highly Capable Agents, Generic Abstraction, Effective Implementation"
if st.button("Explore AutoGen Multi-Agent LLM"):
chat_with_model("Explore the key features of AutoGen: " + outline_autogen, "AutoGen")
with col3:
with st.expander("Whisper ππ§βπ", expanded=False):
link_button_with_emoji("https://arxiv.org/abs/2212.04356", "Whisper", "ππ§βπ Robust STT")
outline_whisper = "Scaling, Deep Learning Approaches, Weak Supervision, Zero-shot Transfer Learning, Accuracy & Robustness, Pre-training Techniques, Broad Range of Environments, Combining Multiple Datasets"
if st.button("Learn About Whisper STT"):
chat_with_model("Learn about the key features of Whisper: " + outline_whisper, "Whisper")
with col4:
with st.expander("ChatDev π¬π»", expanded=False):
link_button_with_emoji("https://arxiv.org/pdf/2307.07924.pdf", "ChatDev", "π¬π» Comm. Agents")
outline_chatdev = "Effective Communication, Comprehensive Software Solutions, Diverse Social Identities, Tailored Codes, Environment Dependencies, User Manuals"
if st.button("Deep Dive into ChatDev"):
chat_with_model("Deep dive into the features of ChatDev: " + outline_chatdev, "ChatDev")
add_paper_buttons_and_links()
# Process user input is a post processor algorithm which runs after document embedding vector DB play of GPT on context of documents..
def process_user_input(user_question):
# Check and initialize 'conversation' in session state if not present
if 'conversation' not in st.session_state:
st.session_state.conversation = {} # Initialize with an empty dictionary or an appropriate default value
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
template = user_template if i % 2 == 0 else bot_template
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
# Save file output from PDF query results
filename = generate_filename(user_question, 'txt')
create_file(filename, user_question, message.content, should_save)
# New functionality to create expanders and buttons
create_expanders_and_buttons(message.content)
def create_expanders_and_buttons(content):
# Split the content into paragraphs
paragraphs = content.split("\n\n")
for paragraph in paragraphs:
# Identify the header and detail in the paragraph
header, detail = extract_feature_and_detail(paragraph)
if header and detail:
with st.expander(header, expanded=False):
if st.button(f"Explore {header}"):
expanded_outline = "Expand on the feature: " + detail
chat_with_model(expanded_outline, header)
def extract_feature_and_detail(paragraph):
# Use regex to find the header and detail in the paragraph
match = re.match(r"(.*?):(.*)", paragraph)
if match:
header = match.group(1).strip()
detail = match.group(2).strip()
return header, detail
return None, None
def transcribe_audio(file_path, model):
key = os.getenv('OPENAI_API_KEY')
headers = {
"Authorization": f"Bearer {key}",
}
with open(file_path, 'rb') as f:
data = {'file': f}
st.write("Read file {file_path}", file_path)
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
if response.status_code == 200:
st.write(response.json())
chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
transcript = response.json().get('text')
#st.write('Responses:')
#st.write(chatResponse)
filename = generate_filename(transcript, 'txt')
#create_file(filename, transcript, chatResponse)
response = chatResponse
user_prompt = transcript
create_file(filename, user_prompt, response, should_save)
return transcript
else:
st.write(response.json())
st.error("Error in API call.")
return None
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
def truncate_document(document, length):
return document[:length]
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
try:
data = file.read()
except:
st.write('')
return file_path
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.py':
mime_type = 'text/plain'
elif ext == '.xlsx':
mime_type = 'text/plain'
elif ext == '.csv':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'{file_name}'
return href
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
return ET.tostring(root, encoding='unicode', method="xml")
def read_file_content(file,max_length):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def extract_mime_type(file):
# Check if the input is a string
if isinstance(file, str):
pattern = r"type='(.*?)'"
match = re.search(pattern, file)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract MIME type from {file}")
# If it's not a string, assume it's a streamlit.UploadedFile object
elif isinstance(file, streamlit.UploadedFile):
return file.type
else:
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
def extract_file_extension(file):
# get the file name directly from the UploadedFile object
file_name = file.name
pattern = r".*?\.(.*?)$"
match = re.search(pattern, file_name)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract file extension from {file_name}")
def pdf2txt(docs):
text = ""
for file in docs:
file_extension = extract_file_extension(file)
# print the file extension
st.write(f"File type extension: {file_extension}")
# read the file according to its extension
try:
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
text += file.getvalue().decode('utf-8')
elif file_extension.lower() == 'pdf':
from PyPDF2 import PdfReader
pdf = PdfReader(BytesIO(file.getvalue()))
for page in range(len(pdf.pages)):
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
except Exception as e:
st.write(f"Error processing file {file.name}: {e}")
return text
def txt2chunks(text):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
return text_splitter.split_text(text)
def vector_store(text_chunks):
key = os.getenv('OPENAI_API_KEY')
embeddings = OpenAIEmbeddings(openai_api_key=key)
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
def get_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
def divide_prompt(prompt, max_length):
words = prompt.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if len(word) + current_length <= max_length:
current_length += len(word) + 1 # Adding 1 to account for spaces
current_chunk.append(word)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
chunks.append(' '.join(current_chunk)) # Append the final chunk
return chunks
def create_zip_of_files(files):
"""
Create a zip file from a list of files.
"""
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_zip_download_link(zip_file):
"""
Generate a link to download the zip file.
"""
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'Download All'
return href
def main():
# Audio, transcribe, GPT:
filename = save_and_play_audio(audio_recorder)
if filename is not None:
try:
transcription = transcribe_audio(filename, "whisper-1")
except:
st.write(' ')
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
filename = None
# prompt interfaces
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
# file section interface for prompts against large documents as context
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
with collength:
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
with colupload:
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
# Document section chat
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file, max_length)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
if st.button("ποΈ View Upload"):
st.markdown("**Sections of the uploaded file:**")
for i, section in enumerate(list(document_sections)):
st.markdown(f"**Section {i+1}**\n{section}")
st.markdown("**Chat with the model:**")
for i, section in enumerate(list(document_sections)):
if i in document_responses:
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
else:
if st.button(f"Chat about Section {i+1}"):
st.write('Reasoning with your inputs...')
response = chat_with_model(user_prompt, section, model_choice)
document_responses[i] = response
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if st.button('π¬ Chat'):
st.write('Reasoning with your inputs...')
# Divide the user_prompt into smaller sections
user_prompt_sections = divide_prompt(user_prompt, max_length)
full_response = ''
for prompt_section in user_prompt_sections:
# Process each section with the model
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
full_response += response + '\n' # Combine the responses
response = full_response
filename = generate_filename(user_prompt, choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
all_files = glob.glob("*.*")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
# Sidebar buttons Download All and Delete All
colDownloadAll, colDeleteAll = st.sidebar.columns([3,3])
with colDownloadAll:
if st.button("β¬οΈ Download All"):
zip_file = create_zip_of_files(all_files)
st.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
with colDeleteAll:
if st.button("π Delete All"):
for file in all_files:
os.remove(file)
st.experimental_rerun()
# Sidebar of Files Saving History and surfacing files as context of prompts and responses
file_contents=''
next_action=''
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
with col1:
if st.button("π", key="md_"+file): # md emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='md'
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("π", key="open_"+file): # open emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='open'
with col4:
if st.button("π", key="read_"+file): # search emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='search'
with col5:
if st.button("π", key="delete_"+file):
os.remove(file)
st.experimental_rerun()
if len(file_contents) > 0:
if next_action=='open':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
if next_action=='md':
st.markdown(file_contents)
if next_action=='search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
st.write('Reasoning with your inputs...')
response = chat_with_model(user_prompt, file_contents, model_choice)
filename = generate_filename(file_contents, choice)
create_file(filename, user_prompt, response, should_save)
st.experimental_rerun()
if __name__ == "__main__":
main()
load_dotenv()
st.write(css, unsafe_allow_html=True)
st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
process_user_input(user_question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader("import documents", accept_multiple_files=True)
with st.spinner("Processing"):
raw = pdf2txt(docs)
if len(raw) > 0:
length = str(len(raw))
text_chunks = txt2chunks(raw)
vectorstore = vector_store(text_chunks)
st.session_state.conversation = get_chain(vectorstore)
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
filename = generate_filename(raw, 'txt')
create_file(filename, raw, '', should_save)