File size: 28,760 Bytes
e3d2f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3482a8
 
 
 
e3d2f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3482a8
 
e3d2f3a
d3482a8
 
e3d2f3a
d3482a8
e3d2f3a
d3482a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3d2f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3482a8
 
 
 
 
 
 
e3d2f3a
 
 
d3482a8
e3d2f3a
 
 
 
 
 
 
 
 
d3482a8
 
 
 
 
e3d2f3a
 
d3482a8
 
 
 
 
e3d2f3a
d3482a8
e3d2f3a
 
d3482a8
 
e3d2f3a
 
 
 
d3482a8
e3d2f3a
 
d3482a8
 
e3d2f3a
 
 
 
 
 
 
 
d3482a8
 
 
 
e3d2f3a
 
 
 
 
 
 
d3482a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3d2f3a
 
d3482a8
 
 
 
 
 
 
 
 
e3d2f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3482a8
e3d2f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3482a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
import streamlit as st
import streamlit.components.v1 as components
import os
import base64
import glob
import io
import json
import mistune
import pytz
import math
import requests
import sys
import time
import re
import textract
import zipfile  
import random
import httpx # add 11/13/23
import asyncio
from openai import OpenAI
#from openai import AsyncOpenAI
from datetime import datetime
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from templates import css, bot_template, user_template
from io import BytesIO
from contextlib import redirect_stdout


# set page config once
st.set_page_config(page_title="Python AI Pair Programmer", layout="wide")

# UI for sidebar controls
should_save = st.sidebar.checkbox("πŸ’Ύ Save", value=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
    with st.expander("Settings πŸ§ πŸ’Ύ", expanded=True):
        # File type for output, model choice
        menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
        choice = st.sidebar.selectbox("Output File Type:", menu)
        model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))

# Define a context dictionary to maintain the state between exec calls
context = {}

def create_file(filename, prompt, response, should_save=True):
    if not should_save:
        return

    # Extract base filename without extension
    base_filename, ext = os.path.splitext(filename)

    # Initialize the combined content
    combined_content = ""

    # Add Prompt with markdown title and emoji
    combined_content += "# Prompt πŸ“\n" + prompt + "\n\n"

    # Add Response with markdown title and emoji
    combined_content += "# Response πŸ’¬\n" + response + "\n\n"

    # Check for code blocks in the response
    resources = re.findall(r"```([\s\S]*?)```", response)
    for resource in resources:
        # Check if the resource contains Python code
        if "python" in resource.lower():
            # Remove the 'python' keyword from the code block
            cleaned_code = re.sub(r'^\s*python', '', resource, flags=re.IGNORECASE | re.MULTILINE)
            
            # Add Code Results title with markdown and emoji
            combined_content += "# Code Results πŸš€\n"

            # Redirect standard output to capture it
            original_stdout = sys.stdout
            sys.stdout = io.StringIO()
            
            # Execute the cleaned Python code within the context
            try:
                exec(cleaned_code, context)
                code_output = sys.stdout.getvalue()
                combined_content += f"```\n{code_output}\n```\n\n"
                realtimeEvalResponse = "# Code Results πŸš€\n" + "```" + code_output + "```\n\n"
                st.code(realtimeEvalResponse)
                
            except Exception as e:
                combined_content += f"```python\nError executing Python code: {e}\n```\n\n"
            
            # Restore the original standard output
            sys.stdout = original_stdout
        else:
            # Add non-Python resources with markdown and emoji
            combined_content += "# Resource πŸ› οΈ\n" + "```" + resource + "```\n\n"

    # Save the combined content to a Markdown file
    if should_save:
        with open(f"{base_filename}.md", 'w') as file:
            file.write(combined_content)
            st.code(combined_content)

    # Create a Base64 encoded link for the file
    with open(f"{base_filename}.md", 'rb') as file:
        encoded_file = base64.b64encode(file.read()).decode()
        href = f'<a href="data:file/markdown;base64,{encoded_file}" download="{filename}">Download File πŸ“„</a>'
        st.markdown(href, unsafe_allow_html=True)


# Read it aloud        
def readitaloud(result):
    documentHTML5='''
    <!DOCTYPE html>
    <html>
    <head>
        <title>Read It Aloud</title>
        <script type="text/javascript">
            function readAloud() {
                const text = document.getElementById("textArea").value;
                const speech = new SpeechSynthesisUtterance(text);
                window.speechSynthesis.speak(speech);
            }
        </script>
    </head>
    <body>
        <h1>πŸ”Š Read It Aloud</h1>
        <textarea id="textArea" rows="10" cols="80">
    '''
    documentHTML5 = documentHTML5 + result
    documentHTML5 = documentHTML5 + '''
        </textarea>
        <br>
        <button onclick="readAloud()">πŸ”Š Read Aloud</button>
    </body>
    </html>
    '''

    components.html(documentHTML5, width=800, height=300)
    #return result

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# Chat and Chat with files
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a python script writer.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(document_section)>0:
        conversation.append({'role': 'assistant', 'content': document_section})
    start_time = time.time()
    report = []
    res_box = st.empty()
    collected_chunks = []
    collected_messages = []
    key = os.getenv('OPENAI_API_KEY')

    client = OpenAI(
        api_key= os.getenv('OPENAI_API_KEY')
    )
    stream = client.chat.completions.create(
        model='gpt-3.5-turbo',
        messages=conversation,
        stream=True,
    )
    all_content = ""  # Initialize an empty string to hold all content
    for part in stream:
        chunk_message = (part.choices[0].delta.content or "")
        collected_messages.append(chunk_message)  # save the message
        content=part.choices[0].delta.content
        try:
            if len(content) > 0:
                report.append(content)
                all_content += content  
                result = "".join(report).strip()
                res_box.markdown(f'*{result}*') 
        except:
            st.write(' ')
    full_reply_content = all_content
    st.write("Elapsed time:")
    st.write(time.time() - start_time)
    filename = generate_filename(full_reply_content, choice)
    create_file(filename, prompt, full_reply_content, should_save)
    readitaloud(full_reply_content)
    return full_reply_content

def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(file_content)>0:
        conversation.append({'role': 'assistant', 'content': file_content})
        client = OpenAI(
            api_key= os.getenv('OPENAI_API_KEY')
        )
    response = client.chat.completions.create(model=model_choice, messages=conversation)
    return response['choices'][0]['message']['content']

def link_button_with_emoji(url, title, emoji_summary):
    emojis = ["πŸ’‰", "πŸ₯", "🌑️", "🩺", "πŸ”¬", "πŸ’Š", "πŸ§ͺ", "πŸ‘¨β€βš•οΈ", "πŸ‘©β€βš•οΈ"]
    random_emoji = random.choice(emojis)
    st.markdown(f"[{random_emoji} {emoji_summary} - {title}]({url})")

    
# Python parts and their corresponding emojis, with expanded details
python_parts = {
    "Syntax": "✏️",
    "Data Types": "πŸ“Š",
    "Control Structures": "πŸ”",
    "Functions": "πŸ”§",
    "Classes": "πŸ—οΈ",
    "API Interaction": "🌐",
    "Data Visualization": "πŸ“ˆ",
    "Error Handling": "⚠️",
    "Libraries": "πŸ“š"
}

python_parts_extended = {
    "Syntax": "✏️ (Variables, Comments, Printing)",
    "Data Types": "πŸ“Š (Numbers, Strings, Lists, Tuples, Sets, Dictionaries)",
    "Control Structures": "πŸ” (If, Elif, Else, Loops, Break, Continue)",
    "Functions": "πŸ”§ (Defining, Calling, Parameters, Return Values)",
    "Classes": "πŸ—οΈ (Creating, Inheritance, Methods, Properties)",
    "API Interaction": "🌐 (Requests, JSON Parsing, HTTP Methods)",
    "Data Visualization": "πŸ“ˆ (Matplotlib, Seaborn, Plotly)",
    "Error Handling": "⚠️ (Try, Except, Finally, Raising)",
    "Libraries": "πŸ“š (Numpy, Pandas, Scikit-Learn, TensorFlow)"
}

# Placeholder for chat responses and interactive examples
response_placeholders = {}
example_placeholders = {}

# Function to display Python concepts with expanders, examples, and quizzes
def display_python_parts():
    st.title("Python Interactive Learning Platform")

    for part, emoji in python_parts.items():
        with st.expander(f"{emoji} {part} - {python_parts_extended[part]}", expanded=False):
            # Interactive examples
            if st.button(f"Show Example for {part}", key=f"example_{part}"):
                example = generate_example(part)
                example_placeholders[part] = example
                st.code(example_placeholders[part], language="python")
                response = chat_with_model('Create a STEM related 3 to 5 line python code example with output for:' + example_placeholders[part], part)

            # Quizzes
            if st.button(f"Take Quiz on {part}", key=f"quiz_{part}"):
                quiz = generate_quiz(part)
                response = chat_with_model(quiz, part)

            # Chat responses
            prompt = f"Learn about {python_parts_extended[part]}"
            if st.button(f"Explore {part}", key=part):
                response = chat_with_model(prompt, part)
                response_placeholders[part] = response

            # Display the chat response if available
            if part in response_placeholders:
                st.markdown(f"**Response:** {response_placeholders[part]}")

def generate_example(part):
    # This function will return a relevant Python example based on the selected part
    # Examples could be pre-defined or dynamically generated
    return "Python example for " + part

def generate_quiz(part):
    # This function will create a simple quiz related to the Python part
    # Quizzes could be multiple-choice questions, true/false, etc.
    return "Python script quiz example for " + part
                
# Define function to add paper buttons and links
def add_paper_buttons_and_links():
    # Python Pair Programmer
    page = st.sidebar.radio("Choose a page:", ["Python Pair Programmer"])
    if page == "Python Pair Programmer":
        # Display Python concepts and interactive sections
        display_python_parts()


        

    col1, col2, col3, col4 = st.columns(4)

    with col1:
        with st.expander("MemGPT πŸ§ πŸ’Ύ", expanded=False):
            link_button_with_emoji("https://arxiv.org/abs/2310.08560", "MemGPT", "πŸ§ πŸ’Ύ Memory OS")
            outline_memgpt = "Memory Hierarchy, Context Paging, Self-directed Memory Updates, Memory Editing, Memory Retrieval, Preprompt Instructions, Semantic Memory, Episodic Memory, Emotional Contextual Understanding"
            if st.button("Discuss MemGPT Features"):
                chat_with_model("Discuss the key features of MemGPT: " + outline_memgpt, "MemGPT")

    with col2:
        with st.expander("AutoGen πŸ€–πŸ”—", expanded=False):
            link_button_with_emoji("https://arxiv.org/abs/2308.08155", "AutoGen", "πŸ€–πŸ”— Multi-Agent LLM")
            outline_autogen = "Cooperative Conversations, Combining Capabilities, Complex Task Solving, Divergent Thinking, Factuality, Highly Capable Agents, Generic Abstraction, Effective Implementation"
            if st.button("Explore AutoGen Multi-Agent LLM"):
                chat_with_model("Explore the key features of AutoGen: " + outline_autogen, "AutoGen")

    with col3:
        with st.expander("Whisper πŸ”ŠπŸ§‘β€πŸš€", expanded=False):
            link_button_with_emoji("https://arxiv.org/abs/2212.04356", "Whisper", "πŸ”ŠπŸ§‘β€πŸš€ Robust STT")
            outline_whisper = "Scaling, Deep Learning Approaches, Weak Supervision, Zero-shot Transfer Learning, Accuracy & Robustness, Pre-training Techniques, Broad Range of Environments, Combining Multiple Datasets"
            if st.button("Learn About Whisper STT"):
                chat_with_model("Learn about the key features of Whisper: " + outline_whisper, "Whisper")

    with col4:
        with st.expander("ChatDev πŸ’¬πŸ’»", expanded=False):
            link_button_with_emoji("https://arxiv.org/pdf/2307.07924.pdf", "ChatDev", "πŸ’¬πŸ’» Comm. Agents")
            outline_chatdev = "Effective Communication, Comprehensive Software Solutions, Diverse Social Identities, Tailored Codes, Environment Dependencies, User Manuals"
            if st.button("Deep Dive into ChatDev"):
                chat_with_model("Deep dive into the features of ChatDev: " + outline_chatdev, "ChatDev")

add_paper_buttons_and_links()


# Process user input is a post processor algorithm which runs after document embedding vector DB play of GPT on context of documents..
def process_user_input(user_question):
    # Check and initialize 'conversation' in session state if not present
    if 'conversation' not in st.session_state:
        st.session_state.conversation = {}  # Initialize with an empty dictionary or an appropriate default value

    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        template = user_template if i % 2 == 0 else bot_template
        st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)

        # Save file output from PDF query results
        filename = generate_filename(user_question, 'txt')
        create_file(filename, user_question, message.content, should_save)

        # New functionality to create expanders and buttons
        create_expanders_and_buttons(message.content)

def create_expanders_and_buttons(content):
    # Split the content into paragraphs
    paragraphs = content.split("\n\n")
    for paragraph in paragraphs:
        # Identify the header and detail in the paragraph
        header, detail = extract_feature_and_detail(paragraph)
        if header and detail:
            with st.expander(header, expanded=False):
                if st.button(f"Explore {header}"):
                    expanded_outline = "Expand on the feature: " + detail
                    chat_with_model(expanded_outline, header)

def extract_feature_and_detail(paragraph):
    # Use regex to find the header and detail in the paragraph
    match = re.match(r"(.*?):(.*)", paragraph)
    if match:
        header = match.group(1).strip()
        detail = match.group(2).strip()
        return header, detail
    return None, None

def transcribe_audio(file_path, model):
    key = os.getenv('OPENAI_API_KEY')
    headers = {
        "Authorization": f"Bearer {key}",
    }
    with open(file_path, 'rb') as f:
        data = {'file': f}
        st.write("Read file {file_path}", file_path)
        OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
        response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
    if response.status_code == 200:
        st.write(response.json())
        chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
        transcript = response.json().get('text')
        #st.write('Responses:')
        #st.write(chatResponse)
        filename = generate_filename(transcript, 'txt')
        #create_file(filename, transcript, chatResponse)
        response = chatResponse
        user_prompt = transcript
        create_file(filename, user_prompt, response, should_save)
        return transcript
    else:
        st.write(response.json())
        st.error("Error in API call.")
        return None

def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None



def truncate_document(document, length):
    return document[:length]

def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]

def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        try:
            data = file.read()
        except:
            st.write('')
            return file_path    
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.py':
        mime_type = 'text/plain'
    elif ext == '.xlsx':
        mime_type = 'text/plain'
    elif ext == '.csv':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href

def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")
    
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""

def extract_mime_type(file):
    # Check if the input is a string
    if isinstance(file, str):
        pattern = r"type='(.*?)'"
        match = re.search(pattern, file)
        if match:
            return match.group(1)
        else:
            raise ValueError(f"Unable to extract MIME type from {file}")
    # If it's not a string, assume it's a streamlit.UploadedFile object
    elif isinstance(file, streamlit.UploadedFile):
        return file.type
    else:
        raise TypeError("Input should be a string or a streamlit.UploadedFile object")



def extract_file_extension(file):
    # get the file name directly from the UploadedFile object
    file_name = file.name
    pattern = r".*?\.(.*?)$"
    match = re.search(pattern, file_name)
    if match:
        return match.group(1)
    else:
        raise ValueError(f"Unable to extract file extension from {file_name}")

def pdf2txt(docs):
    text = ""
    for file in docs:
        file_extension = extract_file_extension(file)
        # print the file extension
        st.write(f"File type extension: {file_extension}")

        # read the file according to its extension
        try:
            if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
                text += file.getvalue().decode('utf-8')
            elif file_extension.lower() == 'pdf':
                from PyPDF2 import PdfReader
                pdf = PdfReader(BytesIO(file.getvalue()))
                for page in range(len(pdf.pages)):
                    text += pdf.pages[page].extract_text() # new PyPDF2 syntax
        except Exception as e:
            st.write(f"Error processing file {file.name}: {e}")
    return text

def txt2chunks(text):
    text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
    return text_splitter.split_text(text)

def vector_store(text_chunks):
    key = os.getenv('OPENAI_API_KEY')
    embeddings = OpenAIEmbeddings(openai_api_key=key)
    return FAISS.from_texts(texts=text_chunks, embedding=embeddings)

def get_chain(vectorstore):
    llm = ChatOpenAI()
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
    return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)

def divide_prompt(prompt, max_length):
    words = prompt.split()
    chunks = []
    current_chunk = []
    current_length = 0
    for word in words:
        if len(word) + current_length <= max_length:
            current_length += len(word) + 1  # Adding 1 to account for spaces
            current_chunk.append(word)
        else:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(word)
    chunks.append(' '.join(current_chunk))  # Append the final chunk
    return chunks

def create_zip_of_files(files):
    """
    Create a zip file from a list of files.
    """
    zip_name = "all_files.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name


def get_zip_download_link(zip_file):
    """
    Generate a link to download the zip file.
    """
    with open(zip_file, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
    return href

    
def main():

    # Audio, transcribe, GPT:
    filename = save_and_play_audio(audio_recorder)

    if filename is not None:
        try:
            transcription = transcribe_audio(filename, "whisper-1")
        except:
            st.write(' ')
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
        filename = None

    # prompt interfaces
    user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)

    # file section interface for prompts against large documents as context
    collength, colupload = st.columns([2,3])  # adjust the ratio as needed
    with collength:
        max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
    with colupload:
        uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])


    # Document section chat
        
    document_sections = deque()
    document_responses = {}
    if uploaded_file is not None:
        file_content = read_file_content(uploaded_file, max_length)
        document_sections.extend(divide_document(file_content, max_length))
    if len(document_sections) > 0:
        if st.button("πŸ‘οΈ View Upload"):
            st.markdown("**Sections of the uploaded file:**")
            for i, section in enumerate(list(document_sections)):
                st.markdown(f"**Section {i+1}**\n{section}")
        st.markdown("**Chat with the model:**")
        for i, section in enumerate(list(document_sections)):
            if i in document_responses:
                st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
            else:
                if st.button(f"Chat about Section {i+1}"):
                    st.write('Reasoning with your inputs...')
                    response = chat_with_model(user_prompt, section, model_choice)
                    document_responses[i] = response
                    filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
                    create_file(filename, user_prompt, response, should_save)
                    st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    if st.button('πŸ’¬ Chat'):
        st.write('Reasoning with your inputs...')
        
        # Divide the user_prompt into smaller sections
        user_prompt_sections = divide_prompt(user_prompt, max_length)
        full_response = ''
        for prompt_section in user_prompt_sections:
            # Process each section with the model
            response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
            full_response += response + '\n'  # Combine the responses
        response = full_response
        filename = generate_filename(user_prompt, choice)
        create_file(filename, user_prompt, response, should_save)
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    all_files = glob.glob("*.*")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order


    # Sidebar buttons Download All and Delete All
    colDownloadAll, colDeleteAll = st.sidebar.columns([3,3])
    with colDownloadAll:
        if st.button("⬇️ Download All"):
            zip_file = create_zip_of_files(all_files)
            st.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
    with colDeleteAll:
        if st.button("πŸ—‘ Delete All"):
            for file in all_files:
                os.remove(file)
            st.experimental_rerun()
        
    # Sidebar of Files Saving History and surfacing files as context of prompts and responses
    file_contents=''
    next_action=''
    for file in all_files:
        col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])  # adjust the ratio as needed
        with col1:
            if st.button("🌐", key="md_"+file):  # md emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='md'
        with col2:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("πŸ“‚", key="open_"+file):  # open emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='open'
        with col4:
            if st.button("πŸ”", key="read_"+file):  # search emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='search'
        with col5:
            if st.button("πŸ—‘", key="delete_"+file):
                os.remove(file)
                st.experimental_rerun()
                
    if len(file_contents) > 0:
        if next_action=='open':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
        if next_action=='md':
            st.markdown(file_contents)
        if next_action=='search':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            st.write('Reasoning with your inputs...')
            response = chat_with_model(user_prompt, file_contents, model_choice)
            filename = generate_filename(file_contents, choice)
            create_file(filename, user_prompt, response, should_save)

            st.experimental_rerun()
                
if __name__ == "__main__":
    main()

load_dotenv()
st.write(css, unsafe_allow_html=True)

st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
    process_user_input(user_question)

with st.sidebar:
    st.subheader("Your documents")
    docs = st.file_uploader("import documents", accept_multiple_files=True)
    with st.spinner("Processing"):
        raw = pdf2txt(docs)
        if len(raw) > 0:
            length = str(len(raw))
            text_chunks = txt2chunks(raw)
            vectorstore = vector_store(text_chunks)
            st.session_state.conversation = get_chain(vectorstore)
            st.markdown('# AI Search Index of Length:' + length + ' Created.')  # add timing
            filename = generate_filename(raw, 'txt')
            create_file(filename, raw, '', should_save)