Spaces:
Runtime error
Runtime error
Atin Sakkeer Hussain
commited on
Commit
•
795ce43
1
Parent(s):
eae7a25
Add Model
Browse files- .idea/.gitignore +3 -0
- .idea/M2UGen-Demo.iml +12 -0
- .idea/inspectionProfiles/Project_Default.xml +56 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/vcs.xml +6 -0
- llama/__init__.py +4 -0
- llama/audioldm2/__init__.py +1 -0
- llama/audioldm2/modeling_audioldm2.py +1513 -0
- llama/audioldm2/pipeline_audioldm2.py +998 -0
- llama/llama.py +339 -0
- llama/m2ugen.py +748 -0
- llama/musicgen/configuration_musicgen.py +233 -0
- llama/musicgen/modeling_attn_mask_utils.py +247 -0
- llama/musicgen/musicgen.py +0 -0
- llama/projector.py +32 -0
- llama/tokenizer.py +55 -0
- llama/utils.py +25 -0
.idea/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
.idea/M2UGen-Demo.iml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="inheritedJdk" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
<component name="PyDocumentationSettings">
|
9 |
+
<option name="format" value="GOOGLE" />
|
10 |
+
<option name="myDocStringFormat" value="Google" />
|
11 |
+
</component>
|
12 |
+
</module>
|
.idea/inspectionProfiles/Project_Default.xml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<profile version="1.0">
|
3 |
+
<option name="myName" value="Project Default" />
|
4 |
+
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
5 |
+
<option name="ignoredPackages">
|
6 |
+
<value>
|
7 |
+
<list size="18">
|
8 |
+
<item index="0" class="java.lang.String" itemvalue="pandas" />
|
9 |
+
<item index="1" class="java.lang.String" itemvalue="tqdm" />
|
10 |
+
<item index="2" class="java.lang.String" itemvalue="absl-py" />
|
11 |
+
<item index="3" class="java.lang.String" itemvalue="dgl" />
|
12 |
+
<item index="4" class="java.lang.String" itemvalue="torch" />
|
13 |
+
<item index="5" class="java.lang.String" itemvalue="numpy" />
|
14 |
+
<item index="6" class="java.lang.String" itemvalue="Cython" />
|
15 |
+
<item index="7" class="java.lang.String" itemvalue="torchlibrosa" />
|
16 |
+
<item index="8" class="java.lang.String" itemvalue="gdown" />
|
17 |
+
<item index="9" class="java.lang.String" itemvalue="wget" />
|
18 |
+
<item index="10" class="java.lang.String" itemvalue="accelerate" />
|
19 |
+
<item index="11" class="java.lang.String" itemvalue="transformers" />
|
20 |
+
<item index="12" class="java.lang.String" itemvalue="gradio" />
|
21 |
+
<item index="13" class="java.lang.String" itemvalue="tensorboard" />
|
22 |
+
<item index="14" class="java.lang.String" itemvalue="diffusers" />
|
23 |
+
<item index="15" class="java.lang.String" itemvalue="opencv-python" />
|
24 |
+
<item index="16" class="java.lang.String" itemvalue="huggingface_hub" />
|
25 |
+
<item index="17" class="java.lang.String" itemvalue="Pillow" />
|
26 |
+
</list>
|
27 |
+
</value>
|
28 |
+
</option>
|
29 |
+
</inspection_tool>
|
30 |
+
<inspection_tool class="PyPep8Inspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
31 |
+
<option name="ignoredErrors">
|
32 |
+
<list>
|
33 |
+
<option value="W605" />
|
34 |
+
</list>
|
35 |
+
</option>
|
36 |
+
</inspection_tool>
|
37 |
+
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
38 |
+
<option name="ignoredErrors">
|
39 |
+
<list>
|
40 |
+
<option value="N806" />
|
41 |
+
<option value="N802" />
|
42 |
+
<option value="N803" />
|
43 |
+
</list>
|
44 |
+
</option>
|
45 |
+
</inspection_tool>
|
46 |
+
<inspection_tool class="PyUnresolvedReferencesInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
47 |
+
<option name="ignoredIdentifiers">
|
48 |
+
<list>
|
49 |
+
<option value="tokenizers.BertWordPieceTokenizer" />
|
50 |
+
<option value="cv2.aruco" />
|
51 |
+
<option value="llama" />
|
52 |
+
</list>
|
53 |
+
</option>
|
54 |
+
</inspection_tool>
|
55 |
+
</profile>
|
56 |
+
</component>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8 (AudioCaption)" project-jdk-type="Python SDK" />
|
4 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/M2UGen-Demo.iml" filepath="$PROJECT_DIR$/.idea/M2UGen-Demo.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/vcs.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="VcsDirectoryMappings">
|
4 |
+
<mapping directory="" vcs="Git" />
|
5 |
+
</component>
|
6 |
+
</project>
|
llama/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .llama import ModelArgs, Transformer
|
2 |
+
from .tokenizer import Tokenizer
|
3 |
+
from .m2ugen import *
|
4 |
+
from .utils import format_prompt
|
llama/audioldm2/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .pipeline_audioldm2 import AudioLDM2Pipeline
|
llama/audioldm2/modeling_audioldm2.py
ADDED
@@ -0,0 +1,1513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
|
22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
from diffusers.models.attention_processor import (
|
26 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
27 |
+
CROSS_ATTENTION_PROCESSORS,
|
28 |
+
AttentionProcessor,
|
29 |
+
AttnAddedKVProcessor,
|
30 |
+
AttnProcessor,
|
31 |
+
)
|
32 |
+
from diffusers.models.embeddings import (
|
33 |
+
TimestepEmbedding,
|
34 |
+
Timesteps,
|
35 |
+
)
|
36 |
+
from diffusers.models.modeling_utils import ModelMixin
|
37 |
+
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
|
38 |
+
from diffusers.models.transformer_2d import Transformer2DModel
|
39 |
+
from diffusers.models.unet_2d_blocks import DownBlock2D, UpBlock2D
|
40 |
+
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
|
41 |
+
from diffusers.utils import BaseOutput, is_torch_version, logging
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
45 |
+
|
46 |
+
|
47 |
+
def add_special_tokens(hidden_states, attention_mask, sos_token, eos_token):
|
48 |
+
batch_size = hidden_states.shape[0]
|
49 |
+
|
50 |
+
if attention_mask is not None:
|
51 |
+
# Add two more steps to attn mask
|
52 |
+
new_attn_mask_step = attention_mask.new_ones((batch_size, 1))
|
53 |
+
attention_mask = torch.concat([new_attn_mask_step, attention_mask, new_attn_mask_step], dim=-1)
|
54 |
+
|
55 |
+
# Add the SOS / EOS tokens at the start / end of the sequence respectively
|
56 |
+
sos_token = sos_token.expand(batch_size, 1, -1)
|
57 |
+
eos_token = eos_token.expand(batch_size, 1, -1)
|
58 |
+
hidden_states = torch.concat([sos_token, hidden_states, eos_token], dim=1)
|
59 |
+
return hidden_states, attention_mask
|
60 |
+
|
61 |
+
|
62 |
+
@dataclass
|
63 |
+
class AudioLDM2ProjectionModelOutput(BaseOutput):
|
64 |
+
"""
|
65 |
+
Args:
|
66 |
+
Class for AudioLDM2 projection layer's outputs.
|
67 |
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
68 |
+
Sequence of hidden-states obtained by linearly projecting the hidden-states for each of the text
|
69 |
+
encoders and subsequently concatenating them together.
|
70 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
71 |
+
Mask to avoid performing attention on padding token indices, formed by concatenating the attention masks
|
72 |
+
for the two text encoders together. Mask values selected in `[0, 1]`:
|
73 |
+
|
74 |
+
- 1 for tokens that are **not masked**,
|
75 |
+
- 0 for tokens that are **masked**.
|
76 |
+
"""
|
77 |
+
|
78 |
+
hidden_states: torch.FloatTensor
|
79 |
+
attention_mask: Optional[torch.LongTensor] = None
|
80 |
+
|
81 |
+
|
82 |
+
class AudioLDM2ProjectionModel(ModelMixin, ConfigMixin):
|
83 |
+
"""
|
84 |
+
A simple linear projection model to map two text embeddings to a shared latent space. It also inserts learned
|
85 |
+
embedding vectors at the start and end of each text embedding sequence respectively. Each variable appended with
|
86 |
+
`_1` refers to that corresponding to the second text encoder. Otherwise, it is from the first.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
text_encoder_dim (`int`):
|
90 |
+
Dimensionality of the text embeddings from the first text encoder (CLAP).
|
91 |
+
text_encoder_1_dim (`int`):
|
92 |
+
Dimensionality of the text embeddings from the second text encoder (T5 or VITS).
|
93 |
+
langauge_model_dim (`int`):
|
94 |
+
Dimensionality of the text embeddings from the language model (GPT2).
|
95 |
+
"""
|
96 |
+
|
97 |
+
@register_to_config
|
98 |
+
def __init__(self, text_encoder_dim, text_encoder_1_dim, langauge_model_dim):
|
99 |
+
super().__init__()
|
100 |
+
# additional projection layers for each text encoder
|
101 |
+
self.projection = nn.Linear(text_encoder_dim, langauge_model_dim)
|
102 |
+
self.projection_1 = nn.Linear(text_encoder_1_dim, langauge_model_dim)
|
103 |
+
|
104 |
+
# learnable SOS / EOS token embeddings for each text encoder
|
105 |
+
self.sos_embed = nn.Parameter(torch.ones(langauge_model_dim))
|
106 |
+
self.eos_embed = nn.Parameter(torch.ones(langauge_model_dim))
|
107 |
+
|
108 |
+
self.sos_embed_1 = nn.Parameter(torch.ones(langauge_model_dim))
|
109 |
+
self.eos_embed_1 = nn.Parameter(torch.ones(langauge_model_dim))
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
hidden_states: Optional[torch.FloatTensor] = None,
|
114 |
+
hidden_states_1: Optional[torch.FloatTensor] = None,
|
115 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
116 |
+
attention_mask_1: Optional[torch.LongTensor] = None,
|
117 |
+
):
|
118 |
+
hidden_states = self.projection(hidden_states)
|
119 |
+
hidden_states, attention_mask = add_special_tokens(
|
120 |
+
hidden_states, attention_mask, sos_token=self.sos_embed, eos_token=self.eos_embed
|
121 |
+
)
|
122 |
+
|
123 |
+
hidden_states_1 = self.projection_1(hidden_states_1)
|
124 |
+
hidden_states_1, attention_mask_1 = add_special_tokens(
|
125 |
+
hidden_states_1, attention_mask_1, sos_token=self.sos_embed_1, eos_token=self.eos_embed_1
|
126 |
+
)
|
127 |
+
|
128 |
+
# concatenate clap and t5 text encoding
|
129 |
+
hidden_states = torch.cat([hidden_states, hidden_states_1], dim=1)
|
130 |
+
|
131 |
+
# concatenate attention masks
|
132 |
+
if attention_mask is None and attention_mask_1 is not None:
|
133 |
+
attention_mask = attention_mask_1.new_ones((hidden_states[:2]))
|
134 |
+
elif attention_mask is not None and attention_mask_1 is None:
|
135 |
+
attention_mask_1 = attention_mask.new_ones((hidden_states_1[:2]))
|
136 |
+
|
137 |
+
if attention_mask is not None and attention_mask_1 is not None:
|
138 |
+
attention_mask = torch.cat([attention_mask, attention_mask_1], dim=-1)
|
139 |
+
else:
|
140 |
+
attention_mask = None
|
141 |
+
|
142 |
+
return AudioLDM2ProjectionModelOutput(
|
143 |
+
hidden_states=hidden_states,
|
144 |
+
attention_mask=attention_mask,
|
145 |
+
)
|
146 |
+
|
147 |
+
|
148 |
+
class AudioLDM2UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
149 |
+
r"""
|
150 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
151 |
+
shaped output. Compared to the vanilla [`UNet2DConditionModel`], this variant optionally includes an additional
|
152 |
+
self-attention layer in each Transformer block, as well as multiple cross-attention layers. It also allows for up
|
153 |
+
to two cross-attention embeddings, `encoder_hidden_states` and `encoder_hidden_states_1`.
|
154 |
+
|
155 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
156 |
+
for all models (such as downloading or saving).
|
157 |
+
|
158 |
+
Parameters:
|
159 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
160 |
+
Height and width of input/output sample.
|
161 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
162 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
163 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
164 |
+
Whether to flip the sin to cos in the time embedding.
|
165 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
166 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
167 |
+
The tuple of downsample blocks to use.
|
168 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
169 |
+
Block type for middle of UNet, it can only be `UNetMidBlock2DCrossAttn` for AudioLDM2.
|
170 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
171 |
+
The tuple of upsample blocks to use.
|
172 |
+
only_cross_attention (`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
173 |
+
Whether to include self-attention in the basic transformer blocks, see
|
174 |
+
[`~models.attention.BasicTransformerBlock`].
|
175 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
176 |
+
The tuple of output channels for each block.
|
177 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
178 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
179 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
180 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
181 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
182 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
183 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
184 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
185 |
+
The dimension of the cross attention features.
|
186 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
187 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
188 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
189 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
190 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
191 |
+
num_attention_heads (`int`, *optional*):
|
192 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
193 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
194 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
195 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
196 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
197 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
198 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
199 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
200 |
+
class conditioning with `class_embed_type` equal to `None`.
|
201 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
202 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
203 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
204 |
+
An optional override for the dimension of the projected time embedding.
|
205 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
206 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
207 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
208 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
209 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
210 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
211 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
212 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
213 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
214 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
215 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
216 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
217 |
+
embeddings with the class embeddings.
|
218 |
+
"""
|
219 |
+
|
220 |
+
_supports_gradient_checkpointing = True
|
221 |
+
|
222 |
+
@register_to_config
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
sample_size: Optional[int] = None,
|
226 |
+
in_channels: int = 4,
|
227 |
+
out_channels: int = 4,
|
228 |
+
flip_sin_to_cos: bool = True,
|
229 |
+
freq_shift: int = 0,
|
230 |
+
down_block_types: Tuple[str] = (
|
231 |
+
"CrossAttnDownBlock2D",
|
232 |
+
"CrossAttnDownBlock2D",
|
233 |
+
"CrossAttnDownBlock2D",
|
234 |
+
"DownBlock2D",
|
235 |
+
),
|
236 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
237 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
238 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
239 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
240 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
241 |
+
downsample_padding: int = 1,
|
242 |
+
mid_block_scale_factor: float = 1,
|
243 |
+
act_fn: str = "silu",
|
244 |
+
norm_num_groups: Optional[int] = 32,
|
245 |
+
norm_eps: float = 1e-5,
|
246 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
247 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
248 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
249 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
250 |
+
use_linear_projection: bool = False,
|
251 |
+
class_embed_type: Optional[str] = None,
|
252 |
+
num_class_embeds: Optional[int] = None,
|
253 |
+
upcast_attention: bool = False,
|
254 |
+
resnet_time_scale_shift: str = "default",
|
255 |
+
time_embedding_type: str = "positional",
|
256 |
+
time_embedding_dim: Optional[int] = None,
|
257 |
+
time_embedding_act_fn: Optional[str] = None,
|
258 |
+
timestep_post_act: Optional[str] = None,
|
259 |
+
time_cond_proj_dim: Optional[int] = None,
|
260 |
+
conv_in_kernel: int = 3,
|
261 |
+
conv_out_kernel: int = 3,
|
262 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
263 |
+
class_embeddings_concat: bool = False,
|
264 |
+
):
|
265 |
+
super().__init__()
|
266 |
+
|
267 |
+
self.sample_size = sample_size
|
268 |
+
|
269 |
+
if num_attention_heads is not None:
|
270 |
+
raise ValueError(
|
271 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
272 |
+
)
|
273 |
+
|
274 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
275 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
276 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
277 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
278 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
279 |
+
# which is why we correct for the naming here.
|
280 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
281 |
+
|
282 |
+
# Check inputs
|
283 |
+
if len(down_block_types) != len(up_block_types):
|
284 |
+
raise ValueError(
|
285 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
286 |
+
)
|
287 |
+
|
288 |
+
if len(block_out_channels) != len(down_block_types):
|
289 |
+
raise ValueError(
|
290 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
291 |
+
)
|
292 |
+
|
293 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
294 |
+
raise ValueError(
|
295 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
296 |
+
)
|
297 |
+
|
298 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
299 |
+
raise ValueError(
|
300 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
301 |
+
)
|
302 |
+
|
303 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
304 |
+
raise ValueError(
|
305 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
306 |
+
)
|
307 |
+
|
308 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
309 |
+
raise ValueError(
|
310 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
311 |
+
)
|
312 |
+
|
313 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
314 |
+
raise ValueError(
|
315 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
316 |
+
)
|
317 |
+
|
318 |
+
# input
|
319 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
320 |
+
self.conv_in = nn.Conv2d(
|
321 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
322 |
+
)
|
323 |
+
|
324 |
+
# time
|
325 |
+
if time_embedding_type == "positional":
|
326 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
327 |
+
|
328 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
329 |
+
timestep_input_dim = block_out_channels[0]
|
330 |
+
else:
|
331 |
+
raise ValueError(f"{time_embedding_type} does not exist. Please make sure to use `positional`.")
|
332 |
+
|
333 |
+
self.time_embedding = TimestepEmbedding(
|
334 |
+
timestep_input_dim,
|
335 |
+
time_embed_dim,
|
336 |
+
act_fn=act_fn,
|
337 |
+
post_act_fn=timestep_post_act,
|
338 |
+
cond_proj_dim=time_cond_proj_dim,
|
339 |
+
)
|
340 |
+
|
341 |
+
# class embedding
|
342 |
+
if class_embed_type is None and num_class_embeds is not None:
|
343 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
344 |
+
elif class_embed_type == "timestep":
|
345 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
346 |
+
elif class_embed_type == "identity":
|
347 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
348 |
+
elif class_embed_type == "projection":
|
349 |
+
if projection_class_embeddings_input_dim is None:
|
350 |
+
raise ValueError(
|
351 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
352 |
+
)
|
353 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
354 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
355 |
+
# 2. it projects from an arbitrary input dimension.
|
356 |
+
#
|
357 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
358 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
359 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
360 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
361 |
+
elif class_embed_type == "simple_projection":
|
362 |
+
if projection_class_embeddings_input_dim is None:
|
363 |
+
raise ValueError(
|
364 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
365 |
+
)
|
366 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
367 |
+
else:
|
368 |
+
self.class_embedding = None
|
369 |
+
|
370 |
+
if time_embedding_act_fn is None:
|
371 |
+
self.time_embed_act = None
|
372 |
+
else:
|
373 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
374 |
+
|
375 |
+
self.down_blocks = nn.ModuleList([])
|
376 |
+
self.up_blocks = nn.ModuleList([])
|
377 |
+
|
378 |
+
if isinstance(only_cross_attention, bool):
|
379 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
380 |
+
|
381 |
+
if isinstance(num_attention_heads, int):
|
382 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
383 |
+
|
384 |
+
if isinstance(cross_attention_dim, int):
|
385 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
386 |
+
|
387 |
+
if isinstance(layers_per_block, int):
|
388 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
389 |
+
|
390 |
+
if isinstance(transformer_layers_per_block, int):
|
391 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
392 |
+
|
393 |
+
if class_embeddings_concat:
|
394 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
395 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
396 |
+
# regular time embeddings
|
397 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
398 |
+
else:
|
399 |
+
blocks_time_embed_dim = time_embed_dim
|
400 |
+
|
401 |
+
# down
|
402 |
+
output_channel = block_out_channels[0]
|
403 |
+
for i, down_block_type in enumerate(down_block_types):
|
404 |
+
input_channel = output_channel
|
405 |
+
output_channel = block_out_channels[i]
|
406 |
+
is_final_block = i == len(block_out_channels) - 1
|
407 |
+
|
408 |
+
down_block = get_down_block(
|
409 |
+
down_block_type,
|
410 |
+
num_layers=layers_per_block[i],
|
411 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
412 |
+
in_channels=input_channel,
|
413 |
+
out_channels=output_channel,
|
414 |
+
temb_channels=blocks_time_embed_dim,
|
415 |
+
add_downsample=not is_final_block,
|
416 |
+
resnet_eps=norm_eps,
|
417 |
+
resnet_act_fn=act_fn,
|
418 |
+
resnet_groups=norm_num_groups,
|
419 |
+
cross_attention_dim=cross_attention_dim[i],
|
420 |
+
num_attention_heads=num_attention_heads[i],
|
421 |
+
downsample_padding=downsample_padding,
|
422 |
+
use_linear_projection=use_linear_projection,
|
423 |
+
only_cross_attention=only_cross_attention[i],
|
424 |
+
upcast_attention=upcast_attention,
|
425 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
426 |
+
)
|
427 |
+
self.down_blocks.append(down_block)
|
428 |
+
|
429 |
+
# mid
|
430 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
431 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
432 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
433 |
+
in_channels=block_out_channels[-1],
|
434 |
+
temb_channels=blocks_time_embed_dim,
|
435 |
+
resnet_eps=norm_eps,
|
436 |
+
resnet_act_fn=act_fn,
|
437 |
+
output_scale_factor=mid_block_scale_factor,
|
438 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
439 |
+
cross_attention_dim=cross_attention_dim[-1],
|
440 |
+
num_attention_heads=num_attention_heads[-1],
|
441 |
+
resnet_groups=norm_num_groups,
|
442 |
+
use_linear_projection=use_linear_projection,
|
443 |
+
upcast_attention=upcast_attention,
|
444 |
+
)
|
445 |
+
else:
|
446 |
+
raise ValueError(
|
447 |
+
f"unknown mid_block_type : {mid_block_type}. Should be `UNetMidBlock2DCrossAttn` for AudioLDM2."
|
448 |
+
)
|
449 |
+
|
450 |
+
# count how many layers upsample the images
|
451 |
+
self.num_upsamplers = 0
|
452 |
+
|
453 |
+
# up
|
454 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
455 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
456 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
457 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
458 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
459 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
460 |
+
|
461 |
+
output_channel = reversed_block_out_channels[0]
|
462 |
+
for i, up_block_type in enumerate(up_block_types):
|
463 |
+
is_final_block = i == len(block_out_channels) - 1
|
464 |
+
|
465 |
+
prev_output_channel = output_channel
|
466 |
+
output_channel = reversed_block_out_channels[i]
|
467 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
468 |
+
|
469 |
+
# add upsample block for all BUT final layer
|
470 |
+
if not is_final_block:
|
471 |
+
add_upsample = True
|
472 |
+
self.num_upsamplers += 1
|
473 |
+
else:
|
474 |
+
add_upsample = False
|
475 |
+
|
476 |
+
up_block = get_up_block(
|
477 |
+
up_block_type,
|
478 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
479 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
480 |
+
in_channels=input_channel,
|
481 |
+
out_channels=output_channel,
|
482 |
+
prev_output_channel=prev_output_channel,
|
483 |
+
temb_channels=blocks_time_embed_dim,
|
484 |
+
add_upsample=add_upsample,
|
485 |
+
resnet_eps=norm_eps,
|
486 |
+
resnet_act_fn=act_fn,
|
487 |
+
resnet_groups=norm_num_groups,
|
488 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
489 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
490 |
+
use_linear_projection=use_linear_projection,
|
491 |
+
only_cross_attention=only_cross_attention[i],
|
492 |
+
upcast_attention=upcast_attention,
|
493 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
494 |
+
)
|
495 |
+
self.up_blocks.append(up_block)
|
496 |
+
prev_output_channel = output_channel
|
497 |
+
|
498 |
+
# out
|
499 |
+
if norm_num_groups is not None:
|
500 |
+
self.conv_norm_out = nn.GroupNorm(
|
501 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
502 |
+
)
|
503 |
+
|
504 |
+
self.conv_act = get_activation(act_fn)
|
505 |
+
|
506 |
+
else:
|
507 |
+
self.conv_norm_out = None
|
508 |
+
self.conv_act = None
|
509 |
+
|
510 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
511 |
+
self.conv_out = nn.Conv2d(
|
512 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
513 |
+
)
|
514 |
+
|
515 |
+
@property
|
516 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
517 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
518 |
+
r"""
|
519 |
+
Returns:
|
520 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
521 |
+
indexed by its weight name.
|
522 |
+
"""
|
523 |
+
# set recursively
|
524 |
+
processors = {}
|
525 |
+
|
526 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
527 |
+
if hasattr(module, "get_processor"):
|
528 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
529 |
+
|
530 |
+
for sub_name, child in module.named_children():
|
531 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
532 |
+
|
533 |
+
return processors
|
534 |
+
|
535 |
+
for name, module in self.named_children():
|
536 |
+
fn_recursive_add_processors(name, module, processors)
|
537 |
+
|
538 |
+
return processors
|
539 |
+
|
540 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
541 |
+
def set_attn_processor(
|
542 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
543 |
+
):
|
544 |
+
r"""
|
545 |
+
Sets the attention processor to use to compute attention.
|
546 |
+
|
547 |
+
Parameters:
|
548 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
549 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
550 |
+
for **all** `Attention` layers.
|
551 |
+
|
552 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
553 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
554 |
+
|
555 |
+
"""
|
556 |
+
count = len(self.attn_processors.keys())
|
557 |
+
|
558 |
+
if isinstance(processor, dict) and len(processor) != count:
|
559 |
+
raise ValueError(
|
560 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
561 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
562 |
+
)
|
563 |
+
|
564 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
565 |
+
if hasattr(module, "set_processor"):
|
566 |
+
if not isinstance(processor, dict):
|
567 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
568 |
+
else:
|
569 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
570 |
+
|
571 |
+
for sub_name, child in module.named_children():
|
572 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
573 |
+
|
574 |
+
for name, module in self.named_children():
|
575 |
+
fn_recursive_attn_processor(name, module, processor)
|
576 |
+
|
577 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
578 |
+
def set_default_attn_processor(self):
|
579 |
+
"""
|
580 |
+
Disables custom attention processors and sets the default attention implementation.
|
581 |
+
"""
|
582 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
583 |
+
processor = AttnAddedKVProcessor()
|
584 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
585 |
+
processor = AttnProcessor()
|
586 |
+
else:
|
587 |
+
raise ValueError(
|
588 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
589 |
+
)
|
590 |
+
|
591 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
592 |
+
|
593 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
594 |
+
def set_attention_slice(self, slice_size):
|
595 |
+
r"""
|
596 |
+
Enable sliced attention computation.
|
597 |
+
|
598 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
599 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
600 |
+
|
601 |
+
Args:
|
602 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
603 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
604 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
605 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
606 |
+
must be a multiple of `slice_size`.
|
607 |
+
"""
|
608 |
+
sliceable_head_dims = []
|
609 |
+
|
610 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
611 |
+
if hasattr(module, "set_attention_slice"):
|
612 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
613 |
+
|
614 |
+
for child in module.children():
|
615 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
616 |
+
|
617 |
+
# retrieve number of attention layers
|
618 |
+
for module in self.children():
|
619 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
620 |
+
|
621 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
622 |
+
|
623 |
+
if slice_size == "auto":
|
624 |
+
# half the attention head size is usually a good trade-off between
|
625 |
+
# speed and memory
|
626 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
627 |
+
elif slice_size == "max":
|
628 |
+
# make smallest slice possible
|
629 |
+
slice_size = num_sliceable_layers * [1]
|
630 |
+
|
631 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
632 |
+
|
633 |
+
if len(slice_size) != len(sliceable_head_dims):
|
634 |
+
raise ValueError(
|
635 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
636 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
637 |
+
)
|
638 |
+
|
639 |
+
for i in range(len(slice_size)):
|
640 |
+
size = slice_size[i]
|
641 |
+
dim = sliceable_head_dims[i]
|
642 |
+
if size is not None and size > dim:
|
643 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
644 |
+
|
645 |
+
# Recursively walk through all the children.
|
646 |
+
# Any children which exposes the set_attention_slice method
|
647 |
+
# gets the message
|
648 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
649 |
+
if hasattr(module, "set_attention_slice"):
|
650 |
+
module.set_attention_slice(slice_size.pop())
|
651 |
+
|
652 |
+
for child in module.children():
|
653 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
654 |
+
|
655 |
+
reversed_slice_size = list(reversed(slice_size))
|
656 |
+
for module in self.children():
|
657 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
658 |
+
|
659 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel._set_gradient_checkpointing
|
660 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
661 |
+
if hasattr(module, "gradient_checkpointing"):
|
662 |
+
module.gradient_checkpointing = value
|
663 |
+
|
664 |
+
def forward(
|
665 |
+
self,
|
666 |
+
sample: torch.FloatTensor,
|
667 |
+
timestep: Union[torch.Tensor, float, int],
|
668 |
+
encoder_hidden_states: torch.Tensor,
|
669 |
+
class_labels: Optional[torch.Tensor] = None,
|
670 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
671 |
+
attention_mask: Optional[torch.Tensor] = None,
|
672 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
673 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
674 |
+
return_dict: bool = True,
|
675 |
+
encoder_hidden_states_1: Optional[torch.Tensor] = None,
|
676 |
+
encoder_attention_mask_1: Optional[torch.Tensor] = None,
|
677 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
678 |
+
r"""
|
679 |
+
The [`AudioLDM2UNet2DConditionModel`] forward method.
|
680 |
+
|
681 |
+
Args:
|
682 |
+
sample (`torch.FloatTensor`):
|
683 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
684 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
685 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
686 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
687 |
+
encoder_attention_mask (`torch.Tensor`):
|
688 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
689 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
690 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
691 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
692 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
693 |
+
tuple.
|
694 |
+
cross_attention_kwargs (`dict`, *optional*):
|
695 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
696 |
+
encoder_hidden_states_1 (`torch.FloatTensor`, *optional*):
|
697 |
+
A second set of encoder hidden states with shape `(batch, sequence_length_2, feature_dim_2)`. Can be
|
698 |
+
used to condition the model on a different set of embeddings to `encoder_hidden_states`.
|
699 |
+
encoder_attention_mask_1 (`torch.Tensor`, *optional*):
|
700 |
+
A cross-attention mask of shape `(batch, sequence_length_2)` is applied to `encoder_hidden_states_1`.
|
701 |
+
If `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
702 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
703 |
+
|
704 |
+
Returns:
|
705 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
706 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
707 |
+
a `tuple` is returned where the first element is the sample tensor.
|
708 |
+
"""
|
709 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
710 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
711 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
712 |
+
# on the fly if necessary.
|
713 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
714 |
+
|
715 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
716 |
+
forward_upsample_size = False
|
717 |
+
upsample_size = None
|
718 |
+
|
719 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
720 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
721 |
+
forward_upsample_size = True
|
722 |
+
|
723 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
724 |
+
# expects mask of shape:
|
725 |
+
# [batch, key_tokens]
|
726 |
+
# adds singleton query_tokens dimension:
|
727 |
+
# [batch, 1, key_tokens]
|
728 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
729 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
730 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
731 |
+
if attention_mask is not None:
|
732 |
+
# assume that mask is expressed as:
|
733 |
+
# (1 = keep, 0 = discard)
|
734 |
+
# convert mask into a bias that can be added to attention scores:
|
735 |
+
# (keep = +0, discard = -10000.0)
|
736 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
737 |
+
attention_mask = attention_mask.unsqueeze(1)
|
738 |
+
|
739 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
740 |
+
if encoder_attention_mask is not None:
|
741 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
742 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
743 |
+
|
744 |
+
if encoder_attention_mask_1 is not None:
|
745 |
+
encoder_attention_mask_1 = (1 - encoder_attention_mask_1.to(sample.dtype)) * -10000.0
|
746 |
+
encoder_attention_mask_1 = encoder_attention_mask_1.unsqueeze(1)
|
747 |
+
|
748 |
+
# 1. time
|
749 |
+
timesteps = timestep
|
750 |
+
if not torch.is_tensor(timesteps):
|
751 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
752 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
753 |
+
is_mps = sample.device.type == "mps"
|
754 |
+
if isinstance(timestep, float):
|
755 |
+
dtype = torch.float32 if is_mps else torch.float64
|
756 |
+
else:
|
757 |
+
dtype = torch.int32 if is_mps else torch.int64
|
758 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
759 |
+
elif len(timesteps.shape) == 0:
|
760 |
+
timesteps = timesteps[None].to(sample.device)
|
761 |
+
|
762 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
763 |
+
timesteps = timesteps.expand(sample.shape[0])
|
764 |
+
|
765 |
+
t_emb = self.time_proj(timesteps)
|
766 |
+
|
767 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
768 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
769 |
+
# there might be better ways to encapsulate this.
|
770 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
771 |
+
|
772 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
773 |
+
aug_emb = None
|
774 |
+
|
775 |
+
if self.class_embedding is not None:
|
776 |
+
if class_labels is None:
|
777 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
778 |
+
|
779 |
+
if self.config.class_embed_type == "timestep":
|
780 |
+
class_labels = self.time_proj(class_labels)
|
781 |
+
|
782 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
783 |
+
# there might be better ways to encapsulate this.
|
784 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
785 |
+
|
786 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
787 |
+
|
788 |
+
if self.config.class_embeddings_concat:
|
789 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
790 |
+
else:
|
791 |
+
emb = emb + class_emb
|
792 |
+
|
793 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
794 |
+
|
795 |
+
if self.time_embed_act is not None:
|
796 |
+
emb = self.time_embed_act(emb)
|
797 |
+
|
798 |
+
# 2. pre-process
|
799 |
+
sample = self.conv_in(sample)
|
800 |
+
|
801 |
+
# 3. down
|
802 |
+
down_block_res_samples = (sample,)
|
803 |
+
for downsample_block in self.down_blocks:
|
804 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
805 |
+
sample, res_samples = downsample_block(
|
806 |
+
hidden_states=sample,
|
807 |
+
temb=emb,
|
808 |
+
encoder_hidden_states=encoder_hidden_states,
|
809 |
+
attention_mask=attention_mask,
|
810 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
811 |
+
encoder_attention_mask=encoder_attention_mask,
|
812 |
+
encoder_hidden_states_1=encoder_hidden_states_1,
|
813 |
+
encoder_attention_mask_1=encoder_attention_mask_1,
|
814 |
+
)
|
815 |
+
else:
|
816 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
817 |
+
|
818 |
+
down_block_res_samples += res_samples
|
819 |
+
|
820 |
+
# 4. mid
|
821 |
+
if self.mid_block is not None:
|
822 |
+
sample = self.mid_block(
|
823 |
+
sample,
|
824 |
+
emb,
|
825 |
+
encoder_hidden_states=encoder_hidden_states,
|
826 |
+
attention_mask=attention_mask,
|
827 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
828 |
+
encoder_attention_mask=encoder_attention_mask,
|
829 |
+
encoder_hidden_states_1=encoder_hidden_states_1,
|
830 |
+
encoder_attention_mask_1=encoder_attention_mask_1,
|
831 |
+
)
|
832 |
+
|
833 |
+
# 5. up
|
834 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
835 |
+
is_final_block = i == len(self.up_blocks) - 1
|
836 |
+
|
837 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
838 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
839 |
+
|
840 |
+
# if we have not reached the final block and need to forward the
|
841 |
+
# upsample size, we do it here
|
842 |
+
if not is_final_block and forward_upsample_size:
|
843 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
844 |
+
|
845 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
846 |
+
sample = upsample_block(
|
847 |
+
hidden_states=sample,
|
848 |
+
temb=emb,
|
849 |
+
res_hidden_states_tuple=res_samples,
|
850 |
+
encoder_hidden_states=encoder_hidden_states,
|
851 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
852 |
+
upsample_size=upsample_size,
|
853 |
+
attention_mask=attention_mask,
|
854 |
+
encoder_attention_mask=encoder_attention_mask,
|
855 |
+
encoder_hidden_states_1=encoder_hidden_states_1,
|
856 |
+
encoder_attention_mask_1=encoder_attention_mask_1,
|
857 |
+
)
|
858 |
+
else:
|
859 |
+
sample = upsample_block(
|
860 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
861 |
+
)
|
862 |
+
|
863 |
+
# 6. post-process
|
864 |
+
if self.conv_norm_out:
|
865 |
+
sample = self.conv_norm_out(sample)
|
866 |
+
sample = self.conv_act(sample)
|
867 |
+
sample = self.conv_out(sample)
|
868 |
+
|
869 |
+
if not return_dict:
|
870 |
+
return (sample,)
|
871 |
+
|
872 |
+
return UNet2DConditionOutput(sample=sample)
|
873 |
+
|
874 |
+
|
875 |
+
def get_down_block(
|
876 |
+
down_block_type,
|
877 |
+
num_layers,
|
878 |
+
in_channels,
|
879 |
+
out_channels,
|
880 |
+
temb_channels,
|
881 |
+
add_downsample,
|
882 |
+
resnet_eps,
|
883 |
+
resnet_act_fn,
|
884 |
+
transformer_layers_per_block=1,
|
885 |
+
num_attention_heads=None,
|
886 |
+
resnet_groups=None,
|
887 |
+
cross_attention_dim=None,
|
888 |
+
downsample_padding=None,
|
889 |
+
use_linear_projection=False,
|
890 |
+
only_cross_attention=False,
|
891 |
+
upcast_attention=False,
|
892 |
+
resnet_time_scale_shift="default",
|
893 |
+
):
|
894 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
895 |
+
if down_block_type == "DownBlock2D":
|
896 |
+
return DownBlock2D(
|
897 |
+
num_layers=num_layers,
|
898 |
+
in_channels=in_channels,
|
899 |
+
out_channels=out_channels,
|
900 |
+
temb_channels=temb_channels,
|
901 |
+
add_downsample=add_downsample,
|
902 |
+
resnet_eps=resnet_eps,
|
903 |
+
resnet_act_fn=resnet_act_fn,
|
904 |
+
resnet_groups=resnet_groups,
|
905 |
+
downsample_padding=downsample_padding,
|
906 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
907 |
+
)
|
908 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
909 |
+
if cross_attention_dim is None:
|
910 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
911 |
+
return CrossAttnDownBlock2D(
|
912 |
+
num_layers=num_layers,
|
913 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
914 |
+
in_channels=in_channels,
|
915 |
+
out_channels=out_channels,
|
916 |
+
temb_channels=temb_channels,
|
917 |
+
add_downsample=add_downsample,
|
918 |
+
resnet_eps=resnet_eps,
|
919 |
+
resnet_act_fn=resnet_act_fn,
|
920 |
+
resnet_groups=resnet_groups,
|
921 |
+
downsample_padding=downsample_padding,
|
922 |
+
cross_attention_dim=cross_attention_dim,
|
923 |
+
num_attention_heads=num_attention_heads,
|
924 |
+
use_linear_projection=use_linear_projection,
|
925 |
+
only_cross_attention=only_cross_attention,
|
926 |
+
upcast_attention=upcast_attention,
|
927 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
928 |
+
)
|
929 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
930 |
+
|
931 |
+
|
932 |
+
def get_up_block(
|
933 |
+
up_block_type,
|
934 |
+
num_layers,
|
935 |
+
in_channels,
|
936 |
+
out_channels,
|
937 |
+
prev_output_channel,
|
938 |
+
temb_channels,
|
939 |
+
add_upsample,
|
940 |
+
resnet_eps,
|
941 |
+
resnet_act_fn,
|
942 |
+
transformer_layers_per_block=1,
|
943 |
+
num_attention_heads=None,
|
944 |
+
resnet_groups=None,
|
945 |
+
cross_attention_dim=None,
|
946 |
+
use_linear_projection=False,
|
947 |
+
only_cross_attention=False,
|
948 |
+
upcast_attention=False,
|
949 |
+
resnet_time_scale_shift="default",
|
950 |
+
):
|
951 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
952 |
+
if up_block_type == "UpBlock2D":
|
953 |
+
return UpBlock2D(
|
954 |
+
num_layers=num_layers,
|
955 |
+
in_channels=in_channels,
|
956 |
+
out_channels=out_channels,
|
957 |
+
prev_output_channel=prev_output_channel,
|
958 |
+
temb_channels=temb_channels,
|
959 |
+
add_upsample=add_upsample,
|
960 |
+
resnet_eps=resnet_eps,
|
961 |
+
resnet_act_fn=resnet_act_fn,
|
962 |
+
resnet_groups=resnet_groups,
|
963 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
964 |
+
)
|
965 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
966 |
+
if cross_attention_dim is None:
|
967 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
968 |
+
return CrossAttnUpBlock2D(
|
969 |
+
num_layers=num_layers,
|
970 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
971 |
+
in_channels=in_channels,
|
972 |
+
out_channels=out_channels,
|
973 |
+
prev_output_channel=prev_output_channel,
|
974 |
+
temb_channels=temb_channels,
|
975 |
+
add_upsample=add_upsample,
|
976 |
+
resnet_eps=resnet_eps,
|
977 |
+
resnet_act_fn=resnet_act_fn,
|
978 |
+
resnet_groups=resnet_groups,
|
979 |
+
cross_attention_dim=cross_attention_dim,
|
980 |
+
num_attention_heads=num_attention_heads,
|
981 |
+
use_linear_projection=use_linear_projection,
|
982 |
+
only_cross_attention=only_cross_attention,
|
983 |
+
upcast_attention=upcast_attention,
|
984 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
985 |
+
)
|
986 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
987 |
+
|
988 |
+
|
989 |
+
class CrossAttnDownBlock2D(nn.Module):
|
990 |
+
def __init__(
|
991 |
+
self,
|
992 |
+
in_channels: int,
|
993 |
+
out_channels: int,
|
994 |
+
temb_channels: int,
|
995 |
+
dropout: float = 0.0,
|
996 |
+
num_layers: int = 1,
|
997 |
+
transformer_layers_per_block: int = 1,
|
998 |
+
resnet_eps: float = 1e-6,
|
999 |
+
resnet_time_scale_shift: str = "default",
|
1000 |
+
resnet_act_fn: str = "swish",
|
1001 |
+
resnet_groups: int = 32,
|
1002 |
+
resnet_pre_norm: bool = True,
|
1003 |
+
num_attention_heads=1,
|
1004 |
+
cross_attention_dim=1280,
|
1005 |
+
output_scale_factor=1.0,
|
1006 |
+
downsample_padding=1,
|
1007 |
+
add_downsample=True,
|
1008 |
+
use_linear_projection=False,
|
1009 |
+
only_cross_attention=False,
|
1010 |
+
upcast_attention=False,
|
1011 |
+
):
|
1012 |
+
super().__init__()
|
1013 |
+
resnets = []
|
1014 |
+
attentions = []
|
1015 |
+
|
1016 |
+
self.has_cross_attention = True
|
1017 |
+
self.num_attention_heads = num_attention_heads
|
1018 |
+
|
1019 |
+
if isinstance(cross_attention_dim, int):
|
1020 |
+
cross_attention_dim = (cross_attention_dim,)
|
1021 |
+
if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4:
|
1022 |
+
raise ValueError(
|
1023 |
+
"Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention "
|
1024 |
+
f"dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}"
|
1025 |
+
)
|
1026 |
+
self.cross_attention_dim = cross_attention_dim
|
1027 |
+
|
1028 |
+
for i in range(num_layers):
|
1029 |
+
in_channels = in_channels if i == 0 else out_channels
|
1030 |
+
resnets.append(
|
1031 |
+
ResnetBlock2D(
|
1032 |
+
in_channels=in_channels,
|
1033 |
+
out_channels=out_channels,
|
1034 |
+
temb_channels=temb_channels,
|
1035 |
+
eps=resnet_eps,
|
1036 |
+
groups=resnet_groups,
|
1037 |
+
dropout=dropout,
|
1038 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1039 |
+
non_linearity=resnet_act_fn,
|
1040 |
+
output_scale_factor=output_scale_factor,
|
1041 |
+
pre_norm=resnet_pre_norm,
|
1042 |
+
)
|
1043 |
+
)
|
1044 |
+
for j in range(len(cross_attention_dim)):
|
1045 |
+
attentions.append(
|
1046 |
+
Transformer2DModel(
|
1047 |
+
num_attention_heads,
|
1048 |
+
out_channels // num_attention_heads,
|
1049 |
+
in_channels=out_channels,
|
1050 |
+
num_layers=transformer_layers_per_block,
|
1051 |
+
cross_attention_dim=cross_attention_dim[j],
|
1052 |
+
norm_num_groups=resnet_groups,
|
1053 |
+
use_linear_projection=use_linear_projection,
|
1054 |
+
only_cross_attention=only_cross_attention,
|
1055 |
+
upcast_attention=upcast_attention,
|
1056 |
+
double_self_attention=True if cross_attention_dim[j] is None else False,
|
1057 |
+
)
|
1058 |
+
)
|
1059 |
+
self.attentions = nn.ModuleList(attentions)
|
1060 |
+
self.resnets = nn.ModuleList(resnets)
|
1061 |
+
|
1062 |
+
if add_downsample:
|
1063 |
+
self.downsamplers = nn.ModuleList(
|
1064 |
+
[
|
1065 |
+
Downsample2D(
|
1066 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
1067 |
+
)
|
1068 |
+
]
|
1069 |
+
)
|
1070 |
+
else:
|
1071 |
+
self.downsamplers = None
|
1072 |
+
|
1073 |
+
self.gradient_checkpointing = False
|
1074 |
+
|
1075 |
+
def forward(
|
1076 |
+
self,
|
1077 |
+
hidden_states: torch.FloatTensor,
|
1078 |
+
temb: Optional[torch.FloatTensor] = None,
|
1079 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1080 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1081 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1082 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1083 |
+
encoder_hidden_states_1: Optional[torch.FloatTensor] = None,
|
1084 |
+
encoder_attention_mask_1: Optional[torch.FloatTensor] = None,
|
1085 |
+
):
|
1086 |
+
output_states = ()
|
1087 |
+
num_layers = len(self.resnets)
|
1088 |
+
num_attention_per_layer = len(self.attentions) // num_layers
|
1089 |
+
|
1090 |
+
encoder_hidden_states_1 = (
|
1091 |
+
encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states
|
1092 |
+
)
|
1093 |
+
encoder_attention_mask_1 = (
|
1094 |
+
encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask
|
1095 |
+
)
|
1096 |
+
|
1097 |
+
for i in range(num_layers):
|
1098 |
+
if self.training and self.gradient_checkpointing:
|
1099 |
+
|
1100 |
+
def create_custom_forward(module, return_dict=None):
|
1101 |
+
def custom_forward(*inputs):
|
1102 |
+
if return_dict is not None:
|
1103 |
+
return module(*inputs, return_dict=return_dict)
|
1104 |
+
else:
|
1105 |
+
return module(*inputs)
|
1106 |
+
|
1107 |
+
return custom_forward
|
1108 |
+
|
1109 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1110 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1111 |
+
create_custom_forward(self.resnets[i]),
|
1112 |
+
hidden_states,
|
1113 |
+
temb,
|
1114 |
+
**ckpt_kwargs,
|
1115 |
+
)
|
1116 |
+
for idx, cross_attention_dim in enumerate(self.cross_attention_dim):
|
1117 |
+
if cross_attention_dim is not None and idx <= 1:
|
1118 |
+
forward_encoder_hidden_states = encoder_hidden_states
|
1119 |
+
forward_encoder_attention_mask = encoder_attention_mask
|
1120 |
+
elif cross_attention_dim is not None and idx > 1:
|
1121 |
+
forward_encoder_hidden_states = encoder_hidden_states_1
|
1122 |
+
forward_encoder_attention_mask = encoder_attention_mask_1
|
1123 |
+
else:
|
1124 |
+
forward_encoder_hidden_states = None
|
1125 |
+
forward_encoder_attention_mask = None
|
1126 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1127 |
+
create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False),
|
1128 |
+
hidden_states,
|
1129 |
+
forward_encoder_hidden_states,
|
1130 |
+
None, # timestep
|
1131 |
+
None, # class_labels
|
1132 |
+
cross_attention_kwargs,
|
1133 |
+
attention_mask,
|
1134 |
+
forward_encoder_attention_mask,
|
1135 |
+
**ckpt_kwargs,
|
1136 |
+
)[0]
|
1137 |
+
else:
|
1138 |
+
hidden_states = self.resnets[i](hidden_states, temb)
|
1139 |
+
for idx, cross_attention_dim in enumerate(self.cross_attention_dim):
|
1140 |
+
if cross_attention_dim is not None and idx <= 1:
|
1141 |
+
forward_encoder_hidden_states = encoder_hidden_states
|
1142 |
+
forward_encoder_attention_mask = encoder_attention_mask
|
1143 |
+
elif cross_attention_dim is not None and idx > 1:
|
1144 |
+
forward_encoder_hidden_states = encoder_hidden_states_1
|
1145 |
+
forward_encoder_attention_mask = encoder_attention_mask_1
|
1146 |
+
else:
|
1147 |
+
forward_encoder_hidden_states = None
|
1148 |
+
forward_encoder_attention_mask = None
|
1149 |
+
hidden_states = self.attentions[i * num_attention_per_layer + idx](
|
1150 |
+
hidden_states,
|
1151 |
+
attention_mask=attention_mask,
|
1152 |
+
encoder_hidden_states=forward_encoder_hidden_states,
|
1153 |
+
encoder_attention_mask=forward_encoder_attention_mask,
|
1154 |
+
return_dict=False,
|
1155 |
+
)[0]
|
1156 |
+
|
1157 |
+
output_states = output_states + (hidden_states,)
|
1158 |
+
|
1159 |
+
if self.downsamplers is not None:
|
1160 |
+
for downsampler in self.downsamplers:
|
1161 |
+
hidden_states = downsampler(hidden_states)
|
1162 |
+
|
1163 |
+
output_states = output_states + (hidden_states,)
|
1164 |
+
|
1165 |
+
return hidden_states, output_states
|
1166 |
+
|
1167 |
+
|
1168 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
1169 |
+
def __init__(
|
1170 |
+
self,
|
1171 |
+
in_channels: int,
|
1172 |
+
temb_channels: int,
|
1173 |
+
dropout: float = 0.0,
|
1174 |
+
num_layers: int = 1,
|
1175 |
+
transformer_layers_per_block: int = 1,
|
1176 |
+
resnet_eps: float = 1e-6,
|
1177 |
+
resnet_time_scale_shift: str = "default",
|
1178 |
+
resnet_act_fn: str = "swish",
|
1179 |
+
resnet_groups: int = 32,
|
1180 |
+
resnet_pre_norm: bool = True,
|
1181 |
+
num_attention_heads=1,
|
1182 |
+
output_scale_factor=1.0,
|
1183 |
+
cross_attention_dim=1280,
|
1184 |
+
use_linear_projection=False,
|
1185 |
+
upcast_attention=False,
|
1186 |
+
):
|
1187 |
+
super().__init__()
|
1188 |
+
|
1189 |
+
self.has_cross_attention = True
|
1190 |
+
self.num_attention_heads = num_attention_heads
|
1191 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
1192 |
+
|
1193 |
+
if isinstance(cross_attention_dim, int):
|
1194 |
+
cross_attention_dim = (cross_attention_dim,)
|
1195 |
+
if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4:
|
1196 |
+
raise ValueError(
|
1197 |
+
"Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention "
|
1198 |
+
f"dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}"
|
1199 |
+
)
|
1200 |
+
self.cross_attention_dim = cross_attention_dim
|
1201 |
+
|
1202 |
+
# there is always at least one resnet
|
1203 |
+
resnets = [
|
1204 |
+
ResnetBlock2D(
|
1205 |
+
in_channels=in_channels,
|
1206 |
+
out_channels=in_channels,
|
1207 |
+
temb_channels=temb_channels,
|
1208 |
+
eps=resnet_eps,
|
1209 |
+
groups=resnet_groups,
|
1210 |
+
dropout=dropout,
|
1211 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1212 |
+
non_linearity=resnet_act_fn,
|
1213 |
+
output_scale_factor=output_scale_factor,
|
1214 |
+
pre_norm=resnet_pre_norm,
|
1215 |
+
)
|
1216 |
+
]
|
1217 |
+
attentions = []
|
1218 |
+
|
1219 |
+
for i in range(num_layers):
|
1220 |
+
for j in range(len(cross_attention_dim)):
|
1221 |
+
attentions.append(
|
1222 |
+
Transformer2DModel(
|
1223 |
+
num_attention_heads,
|
1224 |
+
in_channels // num_attention_heads,
|
1225 |
+
in_channels=in_channels,
|
1226 |
+
num_layers=transformer_layers_per_block,
|
1227 |
+
cross_attention_dim=cross_attention_dim[j],
|
1228 |
+
norm_num_groups=resnet_groups,
|
1229 |
+
use_linear_projection=use_linear_projection,
|
1230 |
+
upcast_attention=upcast_attention,
|
1231 |
+
double_self_attention=True if cross_attention_dim[j] is None else False,
|
1232 |
+
)
|
1233 |
+
)
|
1234 |
+
resnets.append(
|
1235 |
+
ResnetBlock2D(
|
1236 |
+
in_channels=in_channels,
|
1237 |
+
out_channels=in_channels,
|
1238 |
+
temb_channels=temb_channels,
|
1239 |
+
eps=resnet_eps,
|
1240 |
+
groups=resnet_groups,
|
1241 |
+
dropout=dropout,
|
1242 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1243 |
+
non_linearity=resnet_act_fn,
|
1244 |
+
output_scale_factor=output_scale_factor,
|
1245 |
+
pre_norm=resnet_pre_norm,
|
1246 |
+
)
|
1247 |
+
)
|
1248 |
+
|
1249 |
+
self.attentions = nn.ModuleList(attentions)
|
1250 |
+
self.resnets = nn.ModuleList(resnets)
|
1251 |
+
|
1252 |
+
self.gradient_checkpointing = False
|
1253 |
+
|
1254 |
+
def forward(
|
1255 |
+
self,
|
1256 |
+
hidden_states: torch.FloatTensor,
|
1257 |
+
temb: Optional[torch.FloatTensor] = None,
|
1258 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1259 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1260 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1261 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1262 |
+
encoder_hidden_states_1: Optional[torch.FloatTensor] = None,
|
1263 |
+
encoder_attention_mask_1: Optional[torch.FloatTensor] = None,
|
1264 |
+
) -> torch.FloatTensor:
|
1265 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
1266 |
+
num_attention_per_layer = len(self.attentions) // (len(self.resnets) - 1)
|
1267 |
+
|
1268 |
+
encoder_hidden_states_1 = (
|
1269 |
+
encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states
|
1270 |
+
)
|
1271 |
+
encoder_attention_mask_1 = (
|
1272 |
+
encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask
|
1273 |
+
)
|
1274 |
+
|
1275 |
+
for i in range(len(self.resnets[1:])):
|
1276 |
+
if self.training and self.gradient_checkpointing:
|
1277 |
+
|
1278 |
+
def create_custom_forward(module, return_dict=None):
|
1279 |
+
def custom_forward(*inputs):
|
1280 |
+
if return_dict is not None:
|
1281 |
+
return module(*inputs, return_dict=return_dict)
|
1282 |
+
else:
|
1283 |
+
return module(*inputs)
|
1284 |
+
|
1285 |
+
return custom_forward
|
1286 |
+
|
1287 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1288 |
+
for idx, cross_attention_dim in enumerate(self.cross_attention_dim):
|
1289 |
+
if cross_attention_dim is not None and idx <= 1:
|
1290 |
+
forward_encoder_hidden_states = encoder_hidden_states
|
1291 |
+
forward_encoder_attention_mask = encoder_attention_mask
|
1292 |
+
elif cross_attention_dim is not None and idx > 1:
|
1293 |
+
forward_encoder_hidden_states = encoder_hidden_states_1
|
1294 |
+
forward_encoder_attention_mask = encoder_attention_mask_1
|
1295 |
+
else:
|
1296 |
+
forward_encoder_hidden_states = None
|
1297 |
+
forward_encoder_attention_mask = None
|
1298 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1299 |
+
create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False),
|
1300 |
+
hidden_states,
|
1301 |
+
forward_encoder_hidden_states,
|
1302 |
+
None, # timestep
|
1303 |
+
None, # class_labels
|
1304 |
+
cross_attention_kwargs,
|
1305 |
+
attention_mask,
|
1306 |
+
forward_encoder_attention_mask,
|
1307 |
+
**ckpt_kwargs,
|
1308 |
+
)[0]
|
1309 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1310 |
+
create_custom_forward(self.resnets[i + 1]),
|
1311 |
+
hidden_states,
|
1312 |
+
temb,
|
1313 |
+
**ckpt_kwargs,
|
1314 |
+
)
|
1315 |
+
else:
|
1316 |
+
for idx, cross_attention_dim in enumerate(self.cross_attention_dim):
|
1317 |
+
if cross_attention_dim is not None and idx <= 1:
|
1318 |
+
forward_encoder_hidden_states = encoder_hidden_states
|
1319 |
+
forward_encoder_attention_mask = encoder_attention_mask
|
1320 |
+
elif cross_attention_dim is not None and idx > 1:
|
1321 |
+
forward_encoder_hidden_states = encoder_hidden_states_1
|
1322 |
+
forward_encoder_attention_mask = encoder_attention_mask_1
|
1323 |
+
else:
|
1324 |
+
forward_encoder_hidden_states = None
|
1325 |
+
forward_encoder_attention_mask = None
|
1326 |
+
hidden_states = self.attentions[i * num_attention_per_layer + idx](
|
1327 |
+
hidden_states,
|
1328 |
+
attention_mask=attention_mask,
|
1329 |
+
encoder_hidden_states=forward_encoder_hidden_states,
|
1330 |
+
encoder_attention_mask=forward_encoder_attention_mask,
|
1331 |
+
return_dict=False,
|
1332 |
+
)[0]
|
1333 |
+
|
1334 |
+
hidden_states = self.resnets[i + 1](hidden_states, temb)
|
1335 |
+
|
1336 |
+
return hidden_states
|
1337 |
+
|
1338 |
+
|
1339 |
+
class CrossAttnUpBlock2D(nn.Module):
|
1340 |
+
def __init__(
|
1341 |
+
self,
|
1342 |
+
in_channels: int,
|
1343 |
+
out_channels: int,
|
1344 |
+
prev_output_channel: int,
|
1345 |
+
temb_channels: int,
|
1346 |
+
dropout: float = 0.0,
|
1347 |
+
num_layers: int = 1,
|
1348 |
+
transformer_layers_per_block: int = 1,
|
1349 |
+
resnet_eps: float = 1e-6,
|
1350 |
+
resnet_time_scale_shift: str = "default",
|
1351 |
+
resnet_act_fn: str = "swish",
|
1352 |
+
resnet_groups: int = 32,
|
1353 |
+
resnet_pre_norm: bool = True,
|
1354 |
+
num_attention_heads=1,
|
1355 |
+
cross_attention_dim=1280,
|
1356 |
+
output_scale_factor=1.0,
|
1357 |
+
add_upsample=True,
|
1358 |
+
use_linear_projection=False,
|
1359 |
+
only_cross_attention=False,
|
1360 |
+
upcast_attention=False,
|
1361 |
+
):
|
1362 |
+
super().__init__()
|
1363 |
+
resnets = []
|
1364 |
+
attentions = []
|
1365 |
+
|
1366 |
+
self.has_cross_attention = True
|
1367 |
+
self.num_attention_heads = num_attention_heads
|
1368 |
+
|
1369 |
+
if isinstance(cross_attention_dim, int):
|
1370 |
+
cross_attention_dim = (cross_attention_dim,)
|
1371 |
+
if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4:
|
1372 |
+
raise ValueError(
|
1373 |
+
"Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention "
|
1374 |
+
f"dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}"
|
1375 |
+
)
|
1376 |
+
self.cross_attention_dim = cross_attention_dim
|
1377 |
+
|
1378 |
+
for i in range(num_layers):
|
1379 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1380 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1381 |
+
|
1382 |
+
resnets.append(
|
1383 |
+
ResnetBlock2D(
|
1384 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1385 |
+
out_channels=out_channels,
|
1386 |
+
temb_channels=temb_channels,
|
1387 |
+
eps=resnet_eps,
|
1388 |
+
groups=resnet_groups,
|
1389 |
+
dropout=dropout,
|
1390 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1391 |
+
non_linearity=resnet_act_fn,
|
1392 |
+
output_scale_factor=output_scale_factor,
|
1393 |
+
pre_norm=resnet_pre_norm,
|
1394 |
+
)
|
1395 |
+
)
|
1396 |
+
for j in range(len(cross_attention_dim)):
|
1397 |
+
attentions.append(
|
1398 |
+
Transformer2DModel(
|
1399 |
+
num_attention_heads,
|
1400 |
+
out_channels // num_attention_heads,
|
1401 |
+
in_channels=out_channels,
|
1402 |
+
num_layers=transformer_layers_per_block,
|
1403 |
+
cross_attention_dim=cross_attention_dim[j],
|
1404 |
+
norm_num_groups=resnet_groups,
|
1405 |
+
use_linear_projection=use_linear_projection,
|
1406 |
+
only_cross_attention=only_cross_attention,
|
1407 |
+
upcast_attention=upcast_attention,
|
1408 |
+
double_self_attention=True if cross_attention_dim[j] is None else False,
|
1409 |
+
)
|
1410 |
+
)
|
1411 |
+
self.attentions = nn.ModuleList(attentions)
|
1412 |
+
self.resnets = nn.ModuleList(resnets)
|
1413 |
+
|
1414 |
+
if add_upsample:
|
1415 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1416 |
+
else:
|
1417 |
+
self.upsamplers = None
|
1418 |
+
|
1419 |
+
self.gradient_checkpointing = False
|
1420 |
+
|
1421 |
+
def forward(
|
1422 |
+
self,
|
1423 |
+
hidden_states: torch.FloatTensor,
|
1424 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
1425 |
+
temb: Optional[torch.FloatTensor] = None,
|
1426 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1427 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1428 |
+
upsample_size: Optional[int] = None,
|
1429 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1430 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1431 |
+
encoder_hidden_states_1: Optional[torch.FloatTensor] = None,
|
1432 |
+
encoder_attention_mask_1: Optional[torch.FloatTensor] = None,
|
1433 |
+
):
|
1434 |
+
num_layers = len(self.resnets)
|
1435 |
+
num_attention_per_layer = len(self.attentions) // num_layers
|
1436 |
+
|
1437 |
+
encoder_hidden_states_1 = (
|
1438 |
+
encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states
|
1439 |
+
)
|
1440 |
+
encoder_attention_mask_1 = (
|
1441 |
+
encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask
|
1442 |
+
)
|
1443 |
+
|
1444 |
+
for i in range(num_layers):
|
1445 |
+
# pop res hidden states
|
1446 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1447 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1448 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1449 |
+
|
1450 |
+
if self.training and self.gradient_checkpointing:
|
1451 |
+
|
1452 |
+
def create_custom_forward(module, return_dict=None):
|
1453 |
+
def custom_forward(*inputs):
|
1454 |
+
if return_dict is not None:
|
1455 |
+
return module(*inputs, return_dict=return_dict)
|
1456 |
+
else:
|
1457 |
+
return module(*inputs)
|
1458 |
+
|
1459 |
+
return custom_forward
|
1460 |
+
|
1461 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1462 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1463 |
+
create_custom_forward(self.resnets[i]),
|
1464 |
+
hidden_states,
|
1465 |
+
temb,
|
1466 |
+
**ckpt_kwargs,
|
1467 |
+
)
|
1468 |
+
for idx, cross_attention_dim in enumerate(self.cross_attention_dim):
|
1469 |
+
if cross_attention_dim is not None and idx <= 1:
|
1470 |
+
forward_encoder_hidden_states = encoder_hidden_states
|
1471 |
+
forward_encoder_attention_mask = encoder_attention_mask
|
1472 |
+
elif cross_attention_dim is not None and idx > 1:
|
1473 |
+
forward_encoder_hidden_states = encoder_hidden_states_1
|
1474 |
+
forward_encoder_attention_mask = encoder_attention_mask_1
|
1475 |
+
else:
|
1476 |
+
forward_encoder_hidden_states = None
|
1477 |
+
forward_encoder_attention_mask = None
|
1478 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1479 |
+
create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False),
|
1480 |
+
hidden_states,
|
1481 |
+
forward_encoder_hidden_states,
|
1482 |
+
None, # timestep
|
1483 |
+
None, # class_labels
|
1484 |
+
cross_attention_kwargs,
|
1485 |
+
attention_mask,
|
1486 |
+
forward_encoder_attention_mask,
|
1487 |
+
**ckpt_kwargs,
|
1488 |
+
)[0]
|
1489 |
+
else:
|
1490 |
+
hidden_states = self.resnets[i](hidden_states, temb)
|
1491 |
+
for idx, cross_attention_dim in enumerate(self.cross_attention_dim):
|
1492 |
+
if cross_attention_dim is not None and idx <= 1:
|
1493 |
+
forward_encoder_hidden_states = encoder_hidden_states
|
1494 |
+
forward_encoder_attention_mask = encoder_attention_mask
|
1495 |
+
elif cross_attention_dim is not None and idx > 1:
|
1496 |
+
forward_encoder_hidden_states = encoder_hidden_states_1
|
1497 |
+
forward_encoder_attention_mask = encoder_attention_mask_1
|
1498 |
+
else:
|
1499 |
+
forward_encoder_hidden_states = None
|
1500 |
+
forward_encoder_attention_mask = None
|
1501 |
+
hidden_states = self.attentions[i * num_attention_per_layer + idx](
|
1502 |
+
hidden_states,
|
1503 |
+
attention_mask=attention_mask,
|
1504 |
+
encoder_hidden_states=forward_encoder_hidden_states,
|
1505 |
+
encoder_attention_mask=forward_encoder_attention_mask,
|
1506 |
+
return_dict=False,
|
1507 |
+
)[0]
|
1508 |
+
|
1509 |
+
if self.upsamplers is not None:
|
1510 |
+
for upsampler in self.upsamplers:
|
1511 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
1512 |
+
|
1513 |
+
return hidden_states
|
llama/audioldm2/pipeline_audioldm2.py
ADDED
@@ -0,0 +1,998 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 CVSSP, ByteDance and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from transformers import (
|
23 |
+
ClapFeatureExtractor,
|
24 |
+
ClapModel,
|
25 |
+
GPT2Model,
|
26 |
+
RobertaTokenizer,
|
27 |
+
RobertaTokenizerFast,
|
28 |
+
SpeechT5HifiGan,
|
29 |
+
T5EncoderModel,
|
30 |
+
T5Tokenizer,
|
31 |
+
T5TokenizerFast,
|
32 |
+
)
|
33 |
+
|
34 |
+
from diffusers.models import AutoencoderKL
|
35 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
36 |
+
from diffusers.utils import (
|
37 |
+
is_accelerate_available,
|
38 |
+
is_accelerate_version,
|
39 |
+
is_librosa_available,
|
40 |
+
logging,
|
41 |
+
replace_example_docstring,
|
42 |
+
)
|
43 |
+
from diffusers.utils.torch_utils import randn_tensor
|
44 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
45 |
+
from .modeling_audioldm2 import AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel
|
46 |
+
from diffusers.utils import BaseOutput
|
47 |
+
|
48 |
+
if is_librosa_available():
|
49 |
+
import librosa
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
52 |
+
|
53 |
+
EXAMPLE_DOC_STRING = """
|
54 |
+
Examples:
|
55 |
+
```py
|
56 |
+
>>> import scipy
|
57 |
+
>>> import torch
|
58 |
+
>>> from diffusers import AudioLDM2Pipeline
|
59 |
+
|
60 |
+
>>> repo_id = "cvssp/audioldm2"
|
61 |
+
>>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
|
62 |
+
>>> pipe = pipe.to("cuda")
|
63 |
+
|
64 |
+
>>> # define the prompts
|
65 |
+
>>> prompt = "The sound of a hammer hitting a wooden surface."
|
66 |
+
>>> negative_prompt = "Low quality."
|
67 |
+
|
68 |
+
>>> # set the seed for generator
|
69 |
+
>>> generator = torch.Generator("cuda").manual_seed(0)
|
70 |
+
|
71 |
+
>>> # run the generation
|
72 |
+
>>> audio = pipe(
|
73 |
+
... prompt,
|
74 |
+
... negative_prompt=negative_prompt,
|
75 |
+
... num_inference_steps=200,
|
76 |
+
... audio_length_in_s=10.0,
|
77 |
+
... num_waveforms_per_prompt=3,
|
78 |
+
... generator=generator,
|
79 |
+
... ).audios
|
80 |
+
|
81 |
+
>>> # save the best audio sample (index 0) as a .wav file
|
82 |
+
>>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio[0])
|
83 |
+
```
|
84 |
+
"""
|
85 |
+
|
86 |
+
|
87 |
+
@dataclass
|
88 |
+
class AudioPipelineOutput(BaseOutput):
|
89 |
+
"""
|
90 |
+
Output class for audio pipelines.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
audios (`np.ndarray`)
|
94 |
+
List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
|
95 |
+
"""
|
96 |
+
|
97 |
+
audios: np.ndarray
|
98 |
+
|
99 |
+
|
100 |
+
def prepare_inputs_for_generation(
|
101 |
+
inputs_embeds,
|
102 |
+
attention_mask=None,
|
103 |
+
past_key_values=None,
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
if past_key_values is not None:
|
107 |
+
# only last token for inputs_embeds if past is defined in kwargs
|
108 |
+
inputs_embeds = inputs_embeds[:, -1:]
|
109 |
+
|
110 |
+
return {
|
111 |
+
"inputs_embeds": inputs_embeds,
|
112 |
+
"attention_mask": attention_mask,
|
113 |
+
"past_key_values": past_key_values,
|
114 |
+
"use_cache": kwargs.get("use_cache"),
|
115 |
+
}
|
116 |
+
|
117 |
+
|
118 |
+
class AudioLDM2Pipeline(DiffusionPipeline):
|
119 |
+
r"""
|
120 |
+
Pipeline for text-to-audio generation using AudioLDM2.
|
121 |
+
|
122 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
123 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
124 |
+
|
125 |
+
Args:
|
126 |
+
vae ([`AutoencoderKL`]):
|
127 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
128 |
+
text_encoder ([`~transformers.ClapModel`]):
|
129 |
+
First frozen text-encoder. AudioLDM2 uses the joint audio-text embedding model
|
130 |
+
[CLAP](https://huggingface.co/docs/transformers/model_doc/clap#transformers.CLAPTextModelWithProjection),
|
131 |
+
specifically the [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. The
|
132 |
+
text branch is used to encode the text prompt to a prompt embedding. The full audio-text model is used to
|
133 |
+
rank generated waveforms against the text prompt by computing similarity scores.
|
134 |
+
text_encoder_2 ([`~transformers.T5EncoderModel`]):
|
135 |
+
Second frozen text-encoder. AudioLDM2 uses the encoder of
|
136 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
137 |
+
[google/flan-t5-large](https://huggingface.co/google/flan-t5-large) variant.
|
138 |
+
projection_model ([`AudioLDM2ProjectionModel`]):
|
139 |
+
A trained model used to linearly project the hidden-states from the first and second text encoder models
|
140 |
+
and insert learned SOS and EOS token embeddings. The projected hidden-states from the two text encoders are
|
141 |
+
concatenated to give the input to the language model.
|
142 |
+
language_model ([`~transformers.GPT2Model`]):
|
143 |
+
An auto-regressive language model used to generate a sequence of hidden-states conditioned on the projected
|
144 |
+
outputs from the two text encoders.
|
145 |
+
tokenizer ([`~transformers.RobertaTokenizer`]):
|
146 |
+
Tokenizer to tokenize text for the first frozen text-encoder.
|
147 |
+
tokenizer_2 ([`~transformers.T5Tokenizer`]):
|
148 |
+
Tokenizer to tokenize text for the second frozen text-encoder.
|
149 |
+
feature_extractor ([`~transformers.ClapFeatureExtractor`]):
|
150 |
+
Feature extractor to pre-process generated audio waveforms to log-mel spectrograms for automatic scoring.
|
151 |
+
unet ([`UNet2DConditionModel`]):
|
152 |
+
A `UNet2DConditionModel` to denoise the encoded audio latents.
|
153 |
+
scheduler ([`SchedulerMixin`]):
|
154 |
+
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
|
155 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
156 |
+
vocoder ([`~transformers.SpeechT5HifiGan`]):
|
157 |
+
Vocoder of class `SpeechT5HifiGan` to convert the mel-spectrogram latents to the final audio waveform.
|
158 |
+
"""
|
159 |
+
|
160 |
+
def __init__(
|
161 |
+
self,
|
162 |
+
vae: AutoencoderKL,
|
163 |
+
text_encoder: ClapModel,
|
164 |
+
text_encoder_2: T5EncoderModel,
|
165 |
+
projection_model: AudioLDM2ProjectionModel,
|
166 |
+
language_model: GPT2Model,
|
167 |
+
tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast],
|
168 |
+
tokenizer_2: Union[T5Tokenizer, T5TokenizerFast],
|
169 |
+
feature_extractor: ClapFeatureExtractor,
|
170 |
+
unet: AudioLDM2UNet2DConditionModel,
|
171 |
+
scheduler: KarrasDiffusionSchedulers,
|
172 |
+
vocoder: SpeechT5HifiGan,
|
173 |
+
):
|
174 |
+
super().__init__()
|
175 |
+
|
176 |
+
self.register_modules(
|
177 |
+
vae=vae,
|
178 |
+
text_encoder=text_encoder,
|
179 |
+
text_encoder_2=text_encoder_2,
|
180 |
+
projection_model=projection_model,
|
181 |
+
language_model=language_model,
|
182 |
+
tokenizer=tokenizer,
|
183 |
+
tokenizer_2=tokenizer_2,
|
184 |
+
feature_extractor=feature_extractor,
|
185 |
+
unet=unet,
|
186 |
+
scheduler=scheduler,
|
187 |
+
vocoder=vocoder,
|
188 |
+
)
|
189 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
190 |
+
|
191 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
192 |
+
def enable_vae_slicing(self):
|
193 |
+
r"""
|
194 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
195 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
196 |
+
"""
|
197 |
+
self.vae.enable_slicing()
|
198 |
+
|
199 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
200 |
+
def disable_vae_slicing(self):
|
201 |
+
r"""
|
202 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
203 |
+
computing decoding in one step.
|
204 |
+
"""
|
205 |
+
self.vae.disable_slicing()
|
206 |
+
|
207 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
208 |
+
r"""
|
209 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
210 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
211 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
212 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
213 |
+
"""
|
214 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
215 |
+
from accelerate import cpu_offload_with_hook
|
216 |
+
else:
|
217 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
218 |
+
|
219 |
+
device = torch.device(f"cuda:{gpu_id}")
|
220 |
+
|
221 |
+
if self.device.type != "cpu":
|
222 |
+
self.to("cpu", silence_dtype_warnings=True)
|
223 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
224 |
+
|
225 |
+
model_sequence = [
|
226 |
+
self.text_encoder.text_model,
|
227 |
+
self.text_encoder.text_projection,
|
228 |
+
self.text_encoder_2,
|
229 |
+
self.projection_model,
|
230 |
+
self.language_model,
|
231 |
+
self.unet,
|
232 |
+
self.vae,
|
233 |
+
self.vocoder,
|
234 |
+
self.text_encoder,
|
235 |
+
]
|
236 |
+
|
237 |
+
hook = None
|
238 |
+
for cpu_offloaded_model in model_sequence:
|
239 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
240 |
+
|
241 |
+
# We'll offload the last model manually.
|
242 |
+
self.final_offload_hook = hook
|
243 |
+
|
244 |
+
def generate_language_model(
|
245 |
+
self,
|
246 |
+
inputs_embeds: torch.Tensor = None,
|
247 |
+
max_new_tokens: int = 8,
|
248 |
+
**model_kwargs,
|
249 |
+
):
|
250 |
+
"""
|
251 |
+
|
252 |
+
Generates a sequence of hidden-states from the language model, conditioned on the embedding inputs.
|
253 |
+
|
254 |
+
Parameters:
|
255 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
256 |
+
The sequence used as a prompt for the generation.
|
257 |
+
max_new_tokens (`int`):
|
258 |
+
Number of new tokens to generate.
|
259 |
+
model_kwargs (`Dict[str, Any]`, *optional*):
|
260 |
+
Ad hoc parametrization of additional model-specific kwargs that will be forwarded to the `forward`
|
261 |
+
function of the model.
|
262 |
+
|
263 |
+
Return:
|
264 |
+
`inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
265 |
+
The sequence of generated hidden-states.
|
266 |
+
"""
|
267 |
+
max_new_tokens = max_new_tokens if max_new_tokens is not None else self.language_model.config.max_new_tokens
|
268 |
+
for _ in range(max_new_tokens):
|
269 |
+
# prepare model inputs
|
270 |
+
model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs)
|
271 |
+
|
272 |
+
# forward pass to get next hidden states
|
273 |
+
output = self.language_model(**model_inputs, return_dict=True)
|
274 |
+
|
275 |
+
next_hidden_states = output.last_hidden_state
|
276 |
+
|
277 |
+
# Update the model input
|
278 |
+
inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1)
|
279 |
+
|
280 |
+
# Update generated hidden states, model inputs, and length for next step
|
281 |
+
model_kwargs = self.language_model._update_model_kwargs_for_generation(output, model_kwargs)
|
282 |
+
|
283 |
+
return inputs_embeds[:, -max_new_tokens:, :]
|
284 |
+
|
285 |
+
def encode_prompt(
|
286 |
+
self,
|
287 |
+
prompt,
|
288 |
+
device,
|
289 |
+
num_waveforms_per_prompt,
|
290 |
+
do_classifier_free_guidance,
|
291 |
+
negative_prompt=None,
|
292 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
293 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
294 |
+
generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
295 |
+
negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
296 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
297 |
+
negative_attention_mask: Optional[torch.LongTensor] = None,
|
298 |
+
max_new_tokens: Optional[int] = None,
|
299 |
+
):
|
300 |
+
r"""
|
301 |
+
Encodes the prompt into text encoder hidden states.
|
302 |
+
|
303 |
+
Args:
|
304 |
+
prompt (`str` or `List[str]`, *optional*):
|
305 |
+
prompt to be encoded
|
306 |
+
device (`torch.device`):
|
307 |
+
torch device
|
308 |
+
num_waveforms_per_prompt (`int`):
|
309 |
+
number of waveforms that should be generated per prompt
|
310 |
+
do_classifier_free_guidance (`bool`):
|
311 |
+
whether to use classifier free guidance or not
|
312 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
313 |
+
The prompt or prompts not to guide the audio generation. If not defined, one has to pass
|
314 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
315 |
+
less than `1`).
|
316 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
317 |
+
Pre-computed text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, *e.g.*
|
318 |
+
prompt weighting. If not provided, text embeddings will be computed from `prompt` input argument.
|
319 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
320 |
+
Pre-computed negative text embeddings from the Flan T5 model. Can be used to easily tweak text inputs,
|
321 |
+
*e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
|
322 |
+
`negative_prompt` input argument.
|
323 |
+
generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
324 |
+
Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs,
|
325 |
+
*e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input
|
326 |
+
argument.
|
327 |
+
negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
328 |
+
Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text
|
329 |
+
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
|
330 |
+
`negative_prompt` input argument.
|
331 |
+
attention_mask (`torch.LongTensor`, *optional*):
|
332 |
+
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
|
333 |
+
be computed from `prompt` input argument.
|
334 |
+
negative_attention_mask (`torch.LongTensor`, *optional*):
|
335 |
+
Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention
|
336 |
+
mask will be computed from `negative_prompt` input argument.
|
337 |
+
max_new_tokens (`int`, *optional*, defaults to None):
|
338 |
+
The number of new tokens to generate with the GPT2 language model.
|
339 |
+
Returns:
|
340 |
+
prompt_embeds (`torch.FloatTensor`):
|
341 |
+
Text embeddings from the Flan T5 model.
|
342 |
+
attention_mask (`torch.LongTensor`):
|
343 |
+
Attention mask to be applied to the `prompt_embeds`.
|
344 |
+
generated_prompt_embeds (`torch.FloatTensor`):
|
345 |
+
Text embeddings generated from the GPT2 langauge model.
|
346 |
+
|
347 |
+
Example:
|
348 |
+
|
349 |
+
```python
|
350 |
+
>>> import scipy
|
351 |
+
>>> import torch
|
352 |
+
>>> from diffusers import AudioLDM2Pipeline
|
353 |
+
|
354 |
+
>>> repo_id = "cvssp/audioldm2"
|
355 |
+
>>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
|
356 |
+
>>> pipe = pipe.to("cuda")
|
357 |
+
|
358 |
+
>>> # Get text embedding vectors
|
359 |
+
>>> prompt_embeds, attention_mask, generated_prompt_embeds = pipe.encode_prompt(
|
360 |
+
... prompt="Techno music with a strong, upbeat tempo and high melodic riffs",
|
361 |
+
... device="cuda",
|
362 |
+
... do_classifier_free_guidance=True,
|
363 |
+
... )
|
364 |
+
|
365 |
+
>>> # Pass text embeddings to pipeline for text-conditional audio generation
|
366 |
+
>>> audio = pipe(
|
367 |
+
... prompt_embeds=prompt_embeds,
|
368 |
+
... attention_mask=attention_mask,
|
369 |
+
... generated_prompt_embeds=generated_prompt_embeds,
|
370 |
+
... num_inference_steps=200,
|
371 |
+
... audio_length_in_s=10.0,
|
372 |
+
... ).audios[0]
|
373 |
+
|
374 |
+
>>> # save generated audio sample
|
375 |
+
>>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)
|
376 |
+
```"""
|
377 |
+
if prompt is not None and isinstance(prompt, str):
|
378 |
+
batch_size = 1
|
379 |
+
elif prompt is not None and isinstance(prompt, list):
|
380 |
+
batch_size = len(prompt)
|
381 |
+
else:
|
382 |
+
batch_size = prompt_embeds.shape[0]
|
383 |
+
|
384 |
+
# Define tokenizers and text encoders
|
385 |
+
tokenizers = [self.tokenizer, self.tokenizer_2]
|
386 |
+
text_encoders = [self.text_encoder, self.text_encoder_2]
|
387 |
+
|
388 |
+
if prompt_embeds is None:
|
389 |
+
prompt_embeds_list = []
|
390 |
+
attention_mask_list = []
|
391 |
+
|
392 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
393 |
+
text_inputs = tokenizer(
|
394 |
+
prompt,
|
395 |
+
padding="max_length",
|
396 |
+
max_length=tokenizer.model_max_length,
|
397 |
+
truncation=True,
|
398 |
+
return_tensors="pt",
|
399 |
+
)
|
400 |
+
text_input_ids = text_inputs.input_ids
|
401 |
+
attention_mask = text_inputs.attention_mask
|
402 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
403 |
+
|
404 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
405 |
+
text_input_ids, untruncated_ids
|
406 |
+
):
|
407 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
408 |
+
logger.warning(
|
409 |
+
f"The following part of your input was truncated because {text_encoder.config.model_type} can "
|
410 |
+
f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}"
|
411 |
+
)
|
412 |
+
|
413 |
+
text_input_ids = text_input_ids.to(device)
|
414 |
+
attention_mask = attention_mask.to(device)
|
415 |
+
|
416 |
+
if text_encoder.config.model_type == "clap":
|
417 |
+
prompt_embeds = text_encoder.get_text_features(
|
418 |
+
text_input_ids,
|
419 |
+
attention_mask=attention_mask,
|
420 |
+
)
|
421 |
+
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
|
422 |
+
prompt_embeds = prompt_embeds[:, None, :]
|
423 |
+
# make sure that we attend to this single hidden-state
|
424 |
+
attention_mask = attention_mask.new_ones((batch_size, 1))
|
425 |
+
else:
|
426 |
+
prompt_embeds = text_encoder(
|
427 |
+
text_input_ids,
|
428 |
+
attention_mask=attention_mask,
|
429 |
+
)
|
430 |
+
prompt_embeds = prompt_embeds[0]
|
431 |
+
|
432 |
+
prompt_embeds_list.append(prompt_embeds)
|
433 |
+
attention_mask_list.append(attention_mask)
|
434 |
+
projection_output = self.projection_model(
|
435 |
+
hidden_states=prompt_embeds_list[0],
|
436 |
+
hidden_states_1=prompt_embeds_list[1],
|
437 |
+
attention_mask=attention_mask_list[0],
|
438 |
+
attention_mask_1=attention_mask_list[1],
|
439 |
+
)
|
440 |
+
projected_prompt_embeds = projection_output.hidden_states
|
441 |
+
projected_attention_mask = projection_output.attention_mask
|
442 |
+
|
443 |
+
generated_prompt_embeds = self.generate_language_model(
|
444 |
+
projected_prompt_embeds,
|
445 |
+
attention_mask=projected_attention_mask,
|
446 |
+
max_new_tokens=max_new_tokens,
|
447 |
+
)
|
448 |
+
|
449 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
450 |
+
attention_mask = (
|
451 |
+
attention_mask.to(device=device)
|
452 |
+
if attention_mask is not None
|
453 |
+
else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device)
|
454 |
+
)
|
455 |
+
generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.language_model.dtype, device=device)
|
456 |
+
|
457 |
+
bs_embed, seq_len, hidden_size = prompt_embeds.shape
|
458 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
459 |
+
prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
460 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size)
|
461 |
+
|
462 |
+
# duplicate attention mask for each generation per prompt
|
463 |
+
attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt)
|
464 |
+
attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len)
|
465 |
+
|
466 |
+
bs_embed, seq_len, hidden_size = generated_prompt_embeds.shape
|
467 |
+
# duplicate generated embeddings for each generation per prompt, using mps friendly method
|
468 |
+
generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
469 |
+
generated_prompt_embeds = generated_prompt_embeds.view(
|
470 |
+
bs_embed * num_waveforms_per_prompt, seq_len, hidden_size
|
471 |
+
)
|
472 |
+
|
473 |
+
# get unconditional embeddings for classifier free guidance
|
474 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
475 |
+
uncond_tokens: List[str]
|
476 |
+
if negative_prompt is None:
|
477 |
+
uncond_tokens = [""] * batch_size
|
478 |
+
elif type(prompt) is not type(negative_prompt):
|
479 |
+
raise TypeError(
|
480 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
481 |
+
f" {type(prompt)}."
|
482 |
+
)
|
483 |
+
elif isinstance(negative_prompt, str):
|
484 |
+
uncond_tokens = [negative_prompt]
|
485 |
+
elif batch_size != len(negative_prompt):
|
486 |
+
raise ValueError(
|
487 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
488 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
489 |
+
" the batch size of `prompt`."
|
490 |
+
)
|
491 |
+
else:
|
492 |
+
uncond_tokens = negative_prompt
|
493 |
+
|
494 |
+
negative_prompt_embeds_list = []
|
495 |
+
negative_attention_mask_list = []
|
496 |
+
max_length = prompt_embeds.shape[1]
|
497 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
498 |
+
uncond_input = tokenizer(
|
499 |
+
uncond_tokens,
|
500 |
+
padding="max_length",
|
501 |
+
max_length=tokenizer.model_max_length
|
502 |
+
if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
|
503 |
+
else max_length,
|
504 |
+
truncation=True,
|
505 |
+
return_tensors="pt",
|
506 |
+
)
|
507 |
+
|
508 |
+
uncond_input_ids = uncond_input.input_ids.to(device)
|
509 |
+
negative_attention_mask = uncond_input.attention_mask.to(device)
|
510 |
+
|
511 |
+
if text_encoder.config.model_type == "clap":
|
512 |
+
negative_prompt_embeds = text_encoder.get_text_features(
|
513 |
+
uncond_input_ids,
|
514 |
+
attention_mask=negative_attention_mask,
|
515 |
+
)
|
516 |
+
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
|
517 |
+
negative_prompt_embeds = negative_prompt_embeds[:, None, :]
|
518 |
+
# make sure that we attend to this single hidden-state
|
519 |
+
negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1))
|
520 |
+
else:
|
521 |
+
negative_prompt_embeds = text_encoder(
|
522 |
+
uncond_input_ids,
|
523 |
+
attention_mask=negative_attention_mask,
|
524 |
+
)
|
525 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
526 |
+
|
527 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
528 |
+
negative_attention_mask_list.append(negative_attention_mask)
|
529 |
+
|
530 |
+
projection_output = self.projection_model(
|
531 |
+
hidden_states=negative_prompt_embeds_list[0],
|
532 |
+
hidden_states_1=negative_prompt_embeds_list[1],
|
533 |
+
attention_mask=negative_attention_mask_list[0],
|
534 |
+
attention_mask_1=negative_attention_mask_list[1],
|
535 |
+
)
|
536 |
+
negative_projected_prompt_embeds = projection_output.hidden_states
|
537 |
+
negative_projected_attention_mask = projection_output.attention_mask
|
538 |
+
|
539 |
+
negative_generated_prompt_embeds = self.generate_language_model(
|
540 |
+
negative_projected_prompt_embeds,
|
541 |
+
attention_mask=negative_projected_attention_mask,
|
542 |
+
max_new_tokens=max_new_tokens,
|
543 |
+
)
|
544 |
+
|
545 |
+
if do_classifier_free_guidance:
|
546 |
+
seq_len = negative_prompt_embeds.shape[1]
|
547 |
+
|
548 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
549 |
+
negative_attention_mask = (
|
550 |
+
negative_attention_mask.to(device=device)
|
551 |
+
if negative_attention_mask is not None
|
552 |
+
else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device)
|
553 |
+
)
|
554 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.to(
|
555 |
+
dtype=self.language_model.dtype, device=device
|
556 |
+
)
|
557 |
+
|
558 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
559 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
560 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1)
|
561 |
+
|
562 |
+
# duplicate unconditional attention mask for each generation per prompt
|
563 |
+
negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt)
|
564 |
+
negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len)
|
565 |
+
|
566 |
+
# duplicate unconditional generated embeddings for each generation per prompt
|
567 |
+
seq_len = negative_generated_prompt_embeds.shape[1]
|
568 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
569 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.view(
|
570 |
+
batch_size * num_waveforms_per_prompt, seq_len, -1
|
571 |
+
)
|
572 |
+
|
573 |
+
# For classifier free guidance, we need to do two forward passes.
|
574 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
575 |
+
# to avoid doing two forward passes
|
576 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
577 |
+
attention_mask = torch.cat([negative_attention_mask, attention_mask])
|
578 |
+
generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds])
|
579 |
+
|
580 |
+
return prompt_embeds, attention_mask, generated_prompt_embeds
|
581 |
+
|
582 |
+
# Copied from diffusers.pipelines.audioldm.pipeline_audioldm.AudioLDMPipeline.mel_spectrogram_to_waveform
|
583 |
+
def mel_spectrogram_to_waveform(self, mel_spectrogram):
|
584 |
+
if mel_spectrogram.dim() == 4:
|
585 |
+
mel_spectrogram = mel_spectrogram.squeeze(1)
|
586 |
+
|
587 |
+
waveform = self.vocoder(mel_spectrogram)
|
588 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
589 |
+
waveform = waveform.cpu().float()
|
590 |
+
return waveform
|
591 |
+
|
592 |
+
def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype):
|
593 |
+
if not is_librosa_available():
|
594 |
+
logger.info(
|
595 |
+
"Automatic scoring of the generated audio waveforms against the input prompt text requires the "
|
596 |
+
"`librosa` package to resample the generated waveforms. Returning the audios in the order they were "
|
597 |
+
"generated. To enable automatic scoring, install `librosa` with: `pip install librosa`."
|
598 |
+
)
|
599 |
+
return audio
|
600 |
+
inputs = self.tokenizer(text, return_tensors="pt", padding=True)
|
601 |
+
resampled_audio = librosa.resample(
|
602 |
+
audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate
|
603 |
+
)
|
604 |
+
inputs["input_features"] = self.feature_extractor(
|
605 |
+
list(resampled_audio), return_tensors="pt", sampling_rate=self.feature_extractor.sampling_rate
|
606 |
+
).input_features.type(dtype)
|
607 |
+
inputs = inputs.to(device)
|
608 |
+
|
609 |
+
# compute the audio-text similarity score using the CLAP model
|
610 |
+
logits_per_text = self.text_encoder(**inputs).logits_per_text
|
611 |
+
# sort by the highest matching generations per prompt
|
612 |
+
indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt]
|
613 |
+
audio = torch.index_select(audio, 0, indices.reshape(-1).cpu())
|
614 |
+
return audio
|
615 |
+
|
616 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
617 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
618 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
619 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
620 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
621 |
+
# and should be between [0, 1]
|
622 |
+
|
623 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
624 |
+
extra_step_kwargs = {}
|
625 |
+
if accepts_eta:
|
626 |
+
extra_step_kwargs["eta"] = eta
|
627 |
+
|
628 |
+
# check if the scheduler accepts generator
|
629 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
630 |
+
if accepts_generator:
|
631 |
+
extra_step_kwargs["generator"] = generator
|
632 |
+
return extra_step_kwargs
|
633 |
+
|
634 |
+
def check_inputs(
|
635 |
+
self,
|
636 |
+
prompt,
|
637 |
+
audio_length_in_s,
|
638 |
+
vocoder_upsample_factor,
|
639 |
+
callback_steps,
|
640 |
+
negative_prompt=None,
|
641 |
+
prompt_embeds=None,
|
642 |
+
negative_prompt_embeds=None,
|
643 |
+
generated_prompt_embeds=None,
|
644 |
+
negative_generated_prompt_embeds=None,
|
645 |
+
attention_mask=None,
|
646 |
+
negative_attention_mask=None,
|
647 |
+
):
|
648 |
+
min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor
|
649 |
+
if audio_length_in_s < min_audio_length_in_s:
|
650 |
+
raise ValueError(
|
651 |
+
f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but "
|
652 |
+
f"is {audio_length_in_s}."
|
653 |
+
)
|
654 |
+
|
655 |
+
if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0:
|
656 |
+
raise ValueError(
|
657 |
+
f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the "
|
658 |
+
f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of "
|
659 |
+
f"{self.vae_scale_factor}."
|
660 |
+
)
|
661 |
+
|
662 |
+
if (callback_steps is None) or (
|
663 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
664 |
+
):
|
665 |
+
raise ValueError(
|
666 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
667 |
+
f" {type(callback_steps)}."
|
668 |
+
)
|
669 |
+
|
670 |
+
if prompt is not None and prompt_embeds is not None:
|
671 |
+
raise ValueError(
|
672 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
673 |
+
" only forward one of the two."
|
674 |
+
)
|
675 |
+
elif prompt is None and (prompt_embeds is None or generated_prompt_embeds is None):
|
676 |
+
raise ValueError(
|
677 |
+
"Provide either `prompt`, or `prompt_embeds` and `generated_prompt_embeds`. Cannot leave "
|
678 |
+
"`prompt` undefined without specifying both `prompt_embeds` and `generated_prompt_embeds`."
|
679 |
+
)
|
680 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
681 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
682 |
+
|
683 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
684 |
+
raise ValueError(
|
685 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
686 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
687 |
+
)
|
688 |
+
elif negative_prompt_embeds is not None and negative_generated_prompt_embeds is None:
|
689 |
+
raise ValueError(
|
690 |
+
"Cannot forward `negative_prompt_embeds` without `negative_generated_prompt_embeds`. Ensure that"
|
691 |
+
"both arguments are specified"
|
692 |
+
)
|
693 |
+
|
694 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
695 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
696 |
+
raise ValueError(
|
697 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
698 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
699 |
+
f" {negative_prompt_embeds.shape}."
|
700 |
+
)
|
701 |
+
if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]:
|
702 |
+
raise ValueError(
|
703 |
+
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
|
704 |
+
f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}"
|
705 |
+
)
|
706 |
+
|
707 |
+
if generated_prompt_embeds is not None and negative_generated_prompt_embeds is not None:
|
708 |
+
if generated_prompt_embeds.shape != negative_generated_prompt_embeds.shape:
|
709 |
+
raise ValueError(
|
710 |
+
"`generated_prompt_embeds` and `negative_generated_prompt_embeds` must have the same shape when "
|
711 |
+
f"passed directly, but got: `generated_prompt_embeds` {generated_prompt_embeds.shape} != "
|
712 |
+
f"`negative_generated_prompt_embeds` {negative_generated_prompt_embeds.shape}."
|
713 |
+
)
|
714 |
+
if (
|
715 |
+
negative_attention_mask is not None
|
716 |
+
and negative_attention_mask.shape != negative_prompt_embeds.shape[:2]
|
717 |
+
):
|
718 |
+
raise ValueError(
|
719 |
+
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
|
720 |
+
f"`attention_mask: {negative_attention_mask.shape} != `prompt_embeds` {negative_prompt_embeds.shape}"
|
721 |
+
)
|
722 |
+
|
723 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim
|
724 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
|
725 |
+
shape = (
|
726 |
+
batch_size,
|
727 |
+
num_channels_latents,
|
728 |
+
height // self.vae_scale_factor,
|
729 |
+
self.vocoder.config.model_in_dim // self.vae_scale_factor,
|
730 |
+
)
|
731 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
732 |
+
raise ValueError(
|
733 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
734 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
735 |
+
)
|
736 |
+
|
737 |
+
if latents is None:
|
738 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
739 |
+
else:
|
740 |
+
latents = latents.to(device)
|
741 |
+
|
742 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
743 |
+
latents = latents * self.scheduler.init_noise_sigma
|
744 |
+
return latents
|
745 |
+
|
746 |
+
@torch.no_grad()
|
747 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
748 |
+
def __call__(
|
749 |
+
self,
|
750 |
+
prompt: Union[str, List[str]] = None,
|
751 |
+
audio_length_in_s: Optional[float] = None,
|
752 |
+
num_inference_steps: int = 200,
|
753 |
+
guidance_scale: float = 3.5,
|
754 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
755 |
+
num_waveforms_per_prompt: Optional[int] = 1,
|
756 |
+
eta: float = 0.0,
|
757 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
758 |
+
latents: Optional[torch.FloatTensor] = None,
|
759 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
760 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
761 |
+
generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
762 |
+
negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
763 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
764 |
+
negative_attention_mask: Optional[torch.LongTensor] = None,
|
765 |
+
max_new_tokens: Optional[int] = None,
|
766 |
+
return_dict: bool = True,
|
767 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
768 |
+
callback_steps: Optional[int] = 1,
|
769 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
770 |
+
output_type: Optional[str] = "np",
|
771 |
+
return_prompts_only: Optional[bool] = False
|
772 |
+
):
|
773 |
+
r"""
|
774 |
+
The call function to the pipeline for generation.
|
775 |
+
|
776 |
+
Args:
|
777 |
+
prompt (`str` or `List[str]`, *optional*):
|
778 |
+
The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`.
|
779 |
+
audio_length_in_s (`int`, *optional*, defaults to 10.24):
|
780 |
+
The length of the generated audio sample in seconds.
|
781 |
+
num_inference_steps (`int`, *optional*, defaults to 200):
|
782 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality audio at the
|
783 |
+
expense of slower inference.
|
784 |
+
guidance_scale (`float`, *optional*, defaults to 3.5):
|
785 |
+
A higher guidance scale value encourages the model to generate audio that is closely linked to the text
|
786 |
+
`prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`.
|
787 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
788 |
+
The prompt or prompts to guide what to not include in audio generation. If not defined, you need to
|
789 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
790 |
+
num_waveforms_per_prompt (`int`, *optional*, defaults to 1):
|
791 |
+
The number of waveforms to generate per prompt. If `num_waveforms_per_prompt > 1`, then automatic
|
792 |
+
scoring is performed between the generated outputs and the text prompt. This scoring ranks the
|
793 |
+
generated waveforms based on their cosine similarity with the text input in the joint text-audio
|
794 |
+
embedding space.
|
795 |
+
eta (`float`, *optional*, defaults to 0.0):
|
796 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
797 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
798 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
799 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
800 |
+
generation deterministic.
|
801 |
+
latents (`torch.FloatTensor`, *optional*):
|
802 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for spectrogram
|
803 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
804 |
+
tensor is generated by sampling using the supplied random `generator`.
|
805 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
806 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
807 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
808 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
809 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
810 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
811 |
+
generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
812 |
+
Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs,
|
813 |
+
*e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input
|
814 |
+
argument.
|
815 |
+
negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
816 |
+
Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text
|
817 |
+
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
|
818 |
+
`negative_prompt` input argument.
|
819 |
+
attention_mask (`torch.LongTensor`, *optional*):
|
820 |
+
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
|
821 |
+
be computed from `prompt` input argument.
|
822 |
+
negative_attention_mask (`torch.LongTensor`, *optional*):
|
823 |
+
Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention
|
824 |
+
mask will be computed from `negative_prompt` input argument.
|
825 |
+
max_new_tokens (`int`, *optional*, defaults to None):
|
826 |
+
Number of new tokens to generate with the GPT2 language model. If not provided, number of tokens will
|
827 |
+
be taken from the config of the model.
|
828 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
829 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
830 |
+
plain tuple.
|
831 |
+
callback (`Callable`, *optional*):
|
832 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
833 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
834 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
835 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
836 |
+
every step.
|
837 |
+
cross_attention_kwargs (`dict`, *optional*):
|
838 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
839 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
840 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
841 |
+
The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or
|
842 |
+
`"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion
|
843 |
+
model (LDM) output.
|
844 |
+
|
845 |
+
Examples:
|
846 |
+
|
847 |
+
Returns:
|
848 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
849 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
850 |
+
otherwise a `tuple` is returned where the first element is a list with the generated audio.
|
851 |
+
"""
|
852 |
+
# 0. Convert audio input length from seconds to spectrogram height
|
853 |
+
vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate
|
854 |
+
|
855 |
+
if audio_length_in_s is None:
|
856 |
+
audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor
|
857 |
+
|
858 |
+
height = int(audio_length_in_s / vocoder_upsample_factor)
|
859 |
+
|
860 |
+
original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate)
|
861 |
+
if height % self.vae_scale_factor != 0:
|
862 |
+
height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor
|
863 |
+
logger.info(
|
864 |
+
f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} "
|
865 |
+
f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the "
|
866 |
+
f"denoising process."
|
867 |
+
)
|
868 |
+
|
869 |
+
# 1. Check inputs. Raise error if not correct
|
870 |
+
self.check_inputs(
|
871 |
+
prompt,
|
872 |
+
audio_length_in_s,
|
873 |
+
vocoder_upsample_factor,
|
874 |
+
callback_steps,
|
875 |
+
negative_prompt,
|
876 |
+
prompt_embeds,
|
877 |
+
negative_prompt_embeds,
|
878 |
+
generated_prompt_embeds,
|
879 |
+
negative_generated_prompt_embeds,
|
880 |
+
attention_mask,
|
881 |
+
negative_attention_mask,
|
882 |
+
)
|
883 |
+
|
884 |
+
# 2. Define call parameters
|
885 |
+
if prompt is not None and isinstance(prompt, str):
|
886 |
+
batch_size = 1
|
887 |
+
elif prompt is not None and isinstance(prompt, list):
|
888 |
+
batch_size = len(prompt)
|
889 |
+
else:
|
890 |
+
batch_size = prompt_embeds.shape[0]
|
891 |
+
|
892 |
+
device = self._execution_device
|
893 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
894 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
895 |
+
# corresponds to doing no classifier free guidance.
|
896 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
897 |
+
|
898 |
+
# 3. Encode input prompt
|
899 |
+
prompt_embeds, attention_mask, generated_prompt_embeds = self.encode_prompt(
|
900 |
+
prompt,
|
901 |
+
device,
|
902 |
+
num_waveforms_per_prompt,
|
903 |
+
do_classifier_free_guidance,
|
904 |
+
negative_prompt,
|
905 |
+
prompt_embeds=prompt_embeds,
|
906 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
907 |
+
generated_prompt_embeds=generated_prompt_embeds,
|
908 |
+
negative_generated_prompt_embeds=negative_generated_prompt_embeds,
|
909 |
+
attention_mask=attention_mask,
|
910 |
+
negative_attention_mask=negative_attention_mask,
|
911 |
+
max_new_tokens=max_new_tokens,
|
912 |
+
)
|
913 |
+
|
914 |
+
if return_prompts_only:
|
915 |
+
return prompt_embeds, generated_prompt_embeds
|
916 |
+
|
917 |
+
# 4. Prepare timesteps
|
918 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
919 |
+
timesteps = self.scheduler.timesteps
|
920 |
+
|
921 |
+
# 5. Prepare latent variables
|
922 |
+
num_channels_latents = self.unet.config.in_channels
|
923 |
+
latents = self.prepare_latents(
|
924 |
+
batch_size * num_waveforms_per_prompt,
|
925 |
+
num_channels_latents,
|
926 |
+
height,
|
927 |
+
prompt_embeds.dtype,
|
928 |
+
device,
|
929 |
+
generator,
|
930 |
+
latents,
|
931 |
+
)
|
932 |
+
|
933 |
+
# 6. Prepare extra step kwargs
|
934 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
935 |
+
|
936 |
+
# 7. Denoising loop
|
937 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
938 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
939 |
+
for i, t in enumerate(timesteps):
|
940 |
+
# expand the latents if we are doing classifier free guidance
|
941 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
942 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
943 |
+
|
944 |
+
# predict the noise residual
|
945 |
+
noise_pred = self.unet(
|
946 |
+
latent_model_input,
|
947 |
+
t,
|
948 |
+
encoder_hidden_states=generated_prompt_embeds,
|
949 |
+
encoder_hidden_states_1=prompt_embeds,
|
950 |
+
encoder_attention_mask_1=attention_mask,
|
951 |
+
return_dict=False,
|
952 |
+
)[0]
|
953 |
+
|
954 |
+
# perform guidance
|
955 |
+
if do_classifier_free_guidance:
|
956 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
957 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
958 |
+
|
959 |
+
# compute the previous noisy sample x_t -> x_t-1
|
960 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
961 |
+
|
962 |
+
# call the callback, if provided
|
963 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
964 |
+
progress_bar.update()
|
965 |
+
if callback is not None and i % callback_steps == 0:
|
966 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
967 |
+
callback(step_idx, t, latents)
|
968 |
+
|
969 |
+
self.maybe_free_model_hooks()
|
970 |
+
|
971 |
+
# 8. Post-processing
|
972 |
+
if not output_type == "latent":
|
973 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
974 |
+
mel_spectrogram = self.vae.decode(latents).sample
|
975 |
+
else:
|
976 |
+
return AudioPipelineOutput(audios=latents)
|
977 |
+
|
978 |
+
audio = self.mel_spectrogram_to_waveform(mel_spectrogram)
|
979 |
+
|
980 |
+
audio = audio[:, :original_waveform_length]
|
981 |
+
|
982 |
+
# 9. Automatic scoring
|
983 |
+
if num_waveforms_per_prompt > 1 and prompt is not None:
|
984 |
+
audio = self.score_waveforms(
|
985 |
+
text=prompt,
|
986 |
+
audio=audio,
|
987 |
+
num_waveforms_per_prompt=num_waveforms_per_prompt,
|
988 |
+
device=device,
|
989 |
+
dtype=prompt_embeds.dtype,
|
990 |
+
)
|
991 |
+
|
992 |
+
if output_type == "np":
|
993 |
+
audio = audio.numpy()
|
994 |
+
|
995 |
+
if not return_dict:
|
996 |
+
return (audio,)
|
997 |
+
|
998 |
+
return AudioPipelineOutput(audios=audio)
|
llama/llama.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import Embedding, Linear
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
import math
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Any, Optional, Tuple
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class ModelArgs:
|
15 |
+
dim: int = 4096
|
16 |
+
n_layers: int = 32
|
17 |
+
n_heads: int = 32
|
18 |
+
n_kv_heads: Optional[int] = None
|
19 |
+
vocab_size: int = -1 # defined later by tokenizer
|
20 |
+
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
|
21 |
+
ffn_dim_multiplier: Optional[float] = None
|
22 |
+
norm_eps: float = 1e-5
|
23 |
+
|
24 |
+
max_batch_size: int = 1
|
25 |
+
max_seq_len: int = 2048
|
26 |
+
|
27 |
+
w_bias: bool = True # use bias tuning
|
28 |
+
w_lora: bool = True # use lora tuning
|
29 |
+
lora_rank: int = 16
|
30 |
+
|
31 |
+
num_output_tokens: int = 128
|
32 |
+
output_dim_tokens: int = 768
|
33 |
+
num_gen_audio_tokens: int = 8
|
34 |
+
|
35 |
+
|
36 |
+
class RMSNorm(torch.nn.Module):
|
37 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
38 |
+
super().__init__()
|
39 |
+
self.eps = eps
|
40 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
41 |
+
|
42 |
+
def _norm(self, x):
|
43 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
output = self._norm(x.float()).type_as(x)
|
47 |
+
return output * self.weight
|
48 |
+
|
49 |
+
|
50 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
51 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
52 |
+
t = torch.arange(end, device=freqs.device) # type: ignore
|
53 |
+
freqs = torch.outer(t, freqs).float() # type: ignore
|
54 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
55 |
+
return freqs_cis
|
56 |
+
|
57 |
+
|
58 |
+
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
59 |
+
ndim = x.ndim
|
60 |
+
assert 0 <= 1 < ndim
|
61 |
+
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
|
62 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
63 |
+
return freqs_cis.view(*shape)
|
64 |
+
|
65 |
+
|
66 |
+
def apply_rotary_emb(
|
67 |
+
xq: torch.Tensor,
|
68 |
+
xk: torch.Tensor,
|
69 |
+
freqs_cis: torch.Tensor,
|
70 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
71 |
+
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
72 |
+
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
73 |
+
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
74 |
+
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
75 |
+
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
76 |
+
return xq_out.type_as(xq), xk_out.type_as(xk)
|
77 |
+
|
78 |
+
|
79 |
+
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
80 |
+
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
81 |
+
bs, slen, n_kv_heads, head_dim = x.shape
|
82 |
+
if n_rep == 1:
|
83 |
+
return x
|
84 |
+
return (
|
85 |
+
x[:, :, :, None, :]
|
86 |
+
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
87 |
+
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
class Attention(nn.Module):
|
92 |
+
def __init__(self, args: ModelArgs):
|
93 |
+
super().__init__()
|
94 |
+
self.args = args
|
95 |
+
|
96 |
+
self.n_local_heads = args.n_heads
|
97 |
+
self.n_kv_heads = args.n_kv_heads
|
98 |
+
self.head_dim = args.dim // args.n_heads
|
99 |
+
|
100 |
+
self.wq = Linear(
|
101 |
+
args.dim,
|
102 |
+
args.n_heads * self.head_dim,
|
103 |
+
bias=args.w_bias
|
104 |
+
)
|
105 |
+
self.wk = Linear(
|
106 |
+
args.dim,
|
107 |
+
args.n_heads * self.head_dim,
|
108 |
+
bias=False
|
109 |
+
)
|
110 |
+
self.wv = Linear(
|
111 |
+
args.dim,
|
112 |
+
args.n_heads * self.head_dim,
|
113 |
+
bias=False
|
114 |
+
)
|
115 |
+
self.wo = Linear(
|
116 |
+
args.n_heads * self.head_dim,
|
117 |
+
args.dim,
|
118 |
+
bias=args.w_bias
|
119 |
+
)
|
120 |
+
|
121 |
+
if args.w_bias:
|
122 |
+
nn.init.constant_(self.wq.bias.data, 0)
|
123 |
+
nn.init.constant_(self.wo.bias.data, 0)
|
124 |
+
|
125 |
+
self.w_lora = args.w_lora
|
126 |
+
if args.w_lora:
|
127 |
+
self.lora_wq_l1 = Linear(args.dim, args.lora_rank, bias=False)
|
128 |
+
self.lora_wq_l2 = Linear(args.lora_rank, args.dim, bias=False)
|
129 |
+
|
130 |
+
self.lora_wk_l1 = Linear(args.dim, args.lora_rank, bias=False)
|
131 |
+
self.lora_wk_l2 = Linear(args.lora_rank, args.dim, bias=False)
|
132 |
+
|
133 |
+
self.lora_wv_l1 = Linear(args.dim, args.lora_rank, bias=False)
|
134 |
+
self.lora_wv_l2 = Linear(args.lora_rank, args.dim, bias=False)
|
135 |
+
|
136 |
+
self.lora_wo_l1 = Linear(args.dim, args.lora_rank, bias=False)
|
137 |
+
self.lora_wo_l2 = Linear(args.lora_rank, args.dim, bias=False)
|
138 |
+
nn.init.constant_(self.lora_wq_l2.weight.data, 0)
|
139 |
+
nn.init.constant_(self.lora_wk_l2.weight.data, 0)
|
140 |
+
nn.init.constant_(self.lora_wv_l2.weight.data, 0)
|
141 |
+
nn.init.constant_(self.lora_wo_l2.weight.data, 0)
|
142 |
+
|
143 |
+
self.cache_k = None
|
144 |
+
self.cache_v = None
|
145 |
+
|
146 |
+
self.gate = torch.nn.Parameter(torch.zeros(1, self.n_local_heads, 1, 1))
|
147 |
+
|
148 |
+
def train(self, mode: bool = True):
|
149 |
+
if mode:
|
150 |
+
self.cache_k = None
|
151 |
+
self.cache_v = None
|
152 |
+
else:
|
153 |
+
self.cache_k = torch.zeros(
|
154 |
+
(self.args.max_batch_size, self.args.max_seq_len, self.n_local_heads, self.head_dim)
|
155 |
+
).cuda()
|
156 |
+
self.cache_v = torch.zeros(
|
157 |
+
(self.args.max_batch_size, self.args.max_seq_len, self.n_local_heads, self.head_dim)
|
158 |
+
).cuda()
|
159 |
+
return super().train(mode)
|
160 |
+
|
161 |
+
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor],
|
162 |
+
adapter=None):
|
163 |
+
bsz, seqlen, _ = x.shape
|
164 |
+
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
165 |
+
if self.w_lora:
|
166 |
+
xq = xq + self.lora_wq_l2(self.lora_wq_l1(x))
|
167 |
+
xk = xk + self.lora_wk_l2(self.lora_wk_l1(x))
|
168 |
+
xv = xv + self.lora_wv_l2(self.lora_wv_l1(x))
|
169 |
+
|
170 |
+
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
171 |
+
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
172 |
+
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
173 |
+
|
174 |
+
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
|
175 |
+
|
176 |
+
if not self.training:
|
177 |
+
self.cache_k = self.cache_k.to(xq)
|
178 |
+
self.cache_v = self.cache_v.to(xq)
|
179 |
+
|
180 |
+
self.cache_k[:bsz, start_pos: start_pos + seqlen] = xk
|
181 |
+
self.cache_v[:bsz, start_pos: start_pos + seqlen] = xv
|
182 |
+
|
183 |
+
keys = self.cache_k[:bsz, : start_pos + seqlen]
|
184 |
+
values = self.cache_v[:bsz, : start_pos + seqlen]
|
185 |
+
else:
|
186 |
+
assert start_pos == 0
|
187 |
+
keys = xk
|
188 |
+
values = xv
|
189 |
+
|
190 |
+
if adapter is not None:
|
191 |
+
adapter_len = adapter.shape[1]
|
192 |
+
adapter_v = self.wv(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim)
|
193 |
+
adapter_v = adapter_v.transpose(1, 2)
|
194 |
+
|
195 |
+
if adapter_len > 1:
|
196 |
+
adapter_k = self.wk(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim)
|
197 |
+
adapter_k = adapter_k.transpose(1, 2)
|
198 |
+
|
199 |
+
xq = xq.transpose(1, 2)
|
200 |
+
keys = keys.transpose(1, 2)
|
201 |
+
values = values.transpose(1, 2)
|
202 |
+
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
|
203 |
+
|
204 |
+
if mask is not None:
|
205 |
+
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen)
|
206 |
+
|
207 |
+
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
208 |
+
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim)
|
209 |
+
|
210 |
+
if adapter is not None:
|
211 |
+
if adapter_len > 1:
|
212 |
+
adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim)
|
213 |
+
adapter_scores = self.gate.tanh() * F.softmax(adapter_scores.float(), dim=-1).type_as(xq)
|
214 |
+
output = output + torch.matmul(adapter_scores, adapter_v)
|
215 |
+
else:
|
216 |
+
output = output + self.gate.tanh() * adapter_v
|
217 |
+
|
218 |
+
output = output.transpose(
|
219 |
+
1, 2
|
220 |
+
).contiguous().view(bsz, seqlen, -1)
|
221 |
+
|
222 |
+
if self.w_lora:
|
223 |
+
return self.wo(output) + self.lora_wo_l2(self.lora_wo_l1(output))
|
224 |
+
else:
|
225 |
+
return self.wo(output)
|
226 |
+
|
227 |
+
|
228 |
+
class FeedForward(nn.Module):
|
229 |
+
def __init__(
|
230 |
+
self,
|
231 |
+
dim: int,
|
232 |
+
hidden_dim: int,
|
233 |
+
multiple_of: int,
|
234 |
+
args: ModelArgs,
|
235 |
+
ffn_dim_multiplier: Optional[float]
|
236 |
+
):
|
237 |
+
super().__init__()
|
238 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
239 |
+
if ffn_dim_multiplier is not None:
|
240 |
+
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
241 |
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
242 |
+
|
243 |
+
self.w1 = Linear(
|
244 |
+
dim, hidden_dim, bias=args.w_bias
|
245 |
+
)
|
246 |
+
self.w2 = Linear(
|
247 |
+
hidden_dim, dim, bias=args.w_bias
|
248 |
+
)
|
249 |
+
self.w3 = Linear(
|
250 |
+
dim, hidden_dim, bias=args.w_bias
|
251 |
+
)
|
252 |
+
if args.w_bias:
|
253 |
+
nn.init.constant_(self.w1.bias.data, 0)
|
254 |
+
nn.init.constant_(self.w2.bias.data, 0)
|
255 |
+
nn.init.constant_(self.w3.bias.data, 0)
|
256 |
+
|
257 |
+
self.w_lora = args.w_lora
|
258 |
+
if args.w_lora:
|
259 |
+
self.lora_w1_l1 = Linear(dim, args.lora_rank, bias=False)
|
260 |
+
self.lora_w1_l2 = Linear(args.lora_rank, hidden_dim, bias=False)
|
261 |
+
self.lora_w2_l1 = Linear(hidden_dim, args.lora_rank, bias=False)
|
262 |
+
self.lora_w2_l2 = Linear(args.lora_rank, dim, bias=False)
|
263 |
+
self.lora_w3_l1 = Linear(dim, args.lora_rank, bias=False)
|
264 |
+
self.lora_w3_l2 = Linear(args.lora_rank, hidden_dim, bias=False)
|
265 |
+
nn.init.constant_(self.lora_w1_l2.weight.data, 0)
|
266 |
+
nn.init.constant_(self.lora_w2_l2.weight.data, 0)
|
267 |
+
nn.init.constant_(self.lora_w3_l2.weight.data, 0)
|
268 |
+
|
269 |
+
def forward(self, x):
|
270 |
+
if self.w_lora:
|
271 |
+
out = F.silu(self.w1(x) + self.lora_w1_l2(self.lora_w1_l1(x))) * (
|
272 |
+
self.w3(x) + self.lora_w3_l2(self.lora_w3_l1(x)))
|
273 |
+
return self.w2(out) + self.lora_w2_l2(self.lora_w2_l1(out))
|
274 |
+
else:
|
275 |
+
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
276 |
+
|
277 |
+
|
278 |
+
class TransformerBlock(nn.Module):
|
279 |
+
def __init__(self, layer_id: int, args: ModelArgs):
|
280 |
+
super().__init__()
|
281 |
+
self.n_heads = args.n_heads
|
282 |
+
self.dim = args.dim
|
283 |
+
self.head_dim = args.dim // args.n_heads
|
284 |
+
self.attention = Attention(args)
|
285 |
+
self.feed_forward = FeedForward(
|
286 |
+
dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of,
|
287 |
+
ffn_dim_multiplier=args.ffn_dim_multiplier, args=args
|
288 |
+
)
|
289 |
+
self.layer_id = layer_id
|
290 |
+
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
291 |
+
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
292 |
+
|
293 |
+
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor],
|
294 |
+
prompt=None):
|
295 |
+
h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask, prompt)
|
296 |
+
out = h + self.feed_forward.forward(self.ffn_norm(h))
|
297 |
+
return out
|
298 |
+
|
299 |
+
|
300 |
+
class Transformer(nn.Module):
|
301 |
+
def __init__(self, params: ModelArgs):
|
302 |
+
super().__init__()
|
303 |
+
self.params = params
|
304 |
+
self.vocab_size = params.vocab_size
|
305 |
+
self.n_layers = params.n_layers
|
306 |
+
self.tok_embeddings = Embedding(
|
307 |
+
params.vocab_size, params.dim
|
308 |
+
)
|
309 |
+
|
310 |
+
self.layers = torch.nn.ModuleList()
|
311 |
+
for layer_id in range(params.n_layers):
|
312 |
+
self.layers.append(TransformerBlock(layer_id, params))
|
313 |
+
|
314 |
+
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
315 |
+
self.output = Linear(
|
316 |
+
params.dim, params.vocab_size, bias=False
|
317 |
+
)
|
318 |
+
|
319 |
+
self.freqs_cis = precompute_freqs_cis(
|
320 |
+
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2
|
321 |
+
)
|
322 |
+
|
323 |
+
@torch.inference_mode()
|
324 |
+
def forward(self, tokens: torch.Tensor, start_pos: int):
|
325 |
+
_bsz, seqlen = tokens.shape
|
326 |
+
h = self.tok_embeddings(tokens)
|
327 |
+
self.freqs_cis = self.freqs_cis.to(h.device)
|
328 |
+
freqs_cis = self.freqs_cis[start_pos: start_pos + seqlen]
|
329 |
+
|
330 |
+
mask = None
|
331 |
+
if seqlen > 1:
|
332 |
+
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device)
|
333 |
+
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
|
334 |
+
|
335 |
+
for layer in self.layers:
|
336 |
+
h = layer(h, start_pos, freqs_cis, mask)
|
337 |
+
h = self.norm(h)
|
338 |
+
output = self.output(h) # only compute last logits
|
339 |
+
return output.float()
|
llama/m2ugen.py
ADDED
@@ -0,0 +1,748 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from .llama import Transformer, ModelArgs, RMSNorm
|
11 |
+
from .projector import ProjectionLayer
|
12 |
+
from util.misc import download
|
13 |
+
from .utils import sample_top_p
|
14 |
+
from .musicgen.musicgen import MusicgenForConditionalGeneration
|
15 |
+
from .audioldm2 import AudioLDM2Pipeline
|
16 |
+
|
17 |
+
from transformers import LlamaTokenizer
|
18 |
+
from transformers import Wav2Vec2FeatureExtractor, AutoModel
|
19 |
+
from transformers import ViTImageProcessor, ViTModel
|
20 |
+
from transformers import VivitImageProcessor, VivitModel
|
21 |
+
from transformers import AutoProcessor
|
22 |
+
|
23 |
+
import torchaudio
|
24 |
+
|
25 |
+
|
26 |
+
class M2UGen(nn.Module):
|
27 |
+
""" Masked Autoencoder with VisionTransformer backbone
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(self, llama_ckpt_dir, llama_tokenizer, model_args, knn=False, knn_dir="./ckpts", stage=1,
|
31 |
+
legacy_bridge=False, load_llama=True, device=None):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
self.args = model_args
|
35 |
+
|
36 |
+
if device is None:
|
37 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
+
else:
|
39 |
+
self.device = device
|
40 |
+
|
41 |
+
# 1. MERT Encoder
|
42 |
+
# The model files for MERT can be downloaded here in case of network issues:
|
43 |
+
# https://huggingface.co/m-a-p/MERT-v1-330M
|
44 |
+
# And set the mert_path argument to directory with the model files
|
45 |
+
print(f'Initialize MERT...')
|
46 |
+
self.mert_model = AutoModel.from_pretrained(self.args.mert_path, trust_remote_code=True) # .to(self.device)
|
47 |
+
self.mert_processor = Wav2Vec2FeatureExtractor.from_pretrained(self.args.mert_path, trust_remote_code=True)
|
48 |
+
self.mu_mert_agg = nn.Conv1d(in_channels=25, out_channels=1, kernel_size=1)
|
49 |
+
self.mu_mert_proj = nn.Linear(1024, 4096)
|
50 |
+
|
51 |
+
if legacy_bridge:
|
52 |
+
bridge_norm_layer = nn.LayerNorm
|
53 |
+
bridge_bias = True
|
54 |
+
else:
|
55 |
+
bridge_norm_layer = RMSNorm
|
56 |
+
bridge_bias = False
|
57 |
+
|
58 |
+
self.feature_scaler = 1
|
59 |
+
|
60 |
+
self.mu_mert_norm_1 = bridge_norm_layer(4096)
|
61 |
+
self.mu_mert_f1_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
62 |
+
self.mu_mert_f2_1 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
|
63 |
+
self.mu_mert_f3_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
64 |
+
|
65 |
+
self.mu_mert_norm_2 = bridge_norm_layer(4096)
|
66 |
+
self.mu_mert_f1_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
67 |
+
self.mu_mert_f2_2 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
|
68 |
+
self.mu_mert_f3_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
69 |
+
|
70 |
+
self.mu_mert_norm_3 = bridge_norm_layer(4096)
|
71 |
+
self.mu_mert_f1_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
72 |
+
self.mu_mert_f2_3 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
|
73 |
+
self.mu_mert_f3_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
74 |
+
print(f'MERT initialized...')
|
75 |
+
|
76 |
+
# 2. ViT Encoder
|
77 |
+
# The model files for ViT can be downloaded here in case of network issues:
|
78 |
+
# https://huggingface.co/google/vit-base-patch16-224-in21k
|
79 |
+
# And set the vit_path argument to directory with the model files
|
80 |
+
print(f'Initialize ViT...')
|
81 |
+
self.vit_model = ViTModel.from_pretrained(self.args.vit_path) # .to(self.device)
|
82 |
+
self.vit_model.eval()
|
83 |
+
self.vit_processor = ViTImageProcessor.from_pretrained(self.args.vit_path, do_rescale=False)
|
84 |
+
self.iu_vit_agg = nn.Conv1d(in_channels=197, out_channels=1, kernel_size=1)
|
85 |
+
self.iu_vit_proj = nn.Linear(768, 4096)
|
86 |
+
|
87 |
+
self.iu_vit_norm_1 = bridge_norm_layer(4096)
|
88 |
+
self.iu_vit_f1_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
89 |
+
self.iu_vit_f2_1 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
|
90 |
+
self.iu_vit_f3_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
91 |
+
|
92 |
+
self.iu_vit_norm_2 = bridge_norm_layer(4096)
|
93 |
+
self.iu_vit_f1_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
94 |
+
self.iu_vit_f2_2 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
|
95 |
+
self.iu_vit_f3_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
96 |
+
|
97 |
+
self.iu_vit_norm_3 = bridge_norm_layer(4096)
|
98 |
+
self.iu_vit_f1_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
99 |
+
self.iu_vit_f2_3 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
|
100 |
+
self.iu_vit_f3_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
101 |
+
print(f'ViT initialized...')
|
102 |
+
|
103 |
+
# 3. ViViT Encoder
|
104 |
+
# The model files for ViViT can be downloaded here in case of network issues:
|
105 |
+
# https://huggingface.co/google/vivit-b-16x2-kinetics400
|
106 |
+
# And set the vivit_path argument to directory with the model files
|
107 |
+
print(f'Initialize ViViT...')
|
108 |
+
self.vivit_model = VivitModel.from_pretrained(self.args.vivit_path) # .to(self.device)
|
109 |
+
self.vivit_model.eval()
|
110 |
+
self.vivit_processor = VivitImageProcessor.from_pretrained(self.args.vivit_path)
|
111 |
+
self.iu_vivit_agg = nn.Conv1d(in_channels=3137, out_channels=1, kernel_size=1)
|
112 |
+
self.iu_vivit_proj = nn.Linear(768, 4096)
|
113 |
+
|
114 |
+
self.iu_vivit_norm_1 = bridge_norm_layer(4096)
|
115 |
+
self.iu_vivit_f1_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
116 |
+
self.iu_vivit_f2_1 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
|
117 |
+
self.iu_vivit_f3_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
118 |
+
|
119 |
+
self.iu_vivit_norm_2 = bridge_norm_layer(4096)
|
120 |
+
self.iu_vivit_f1_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
121 |
+
self.iu_vivit_f2_2 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
|
122 |
+
self.iu_vivit_f3_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
123 |
+
|
124 |
+
self.iu_vivit_norm_3 = bridge_norm_layer(4096)
|
125 |
+
self.iu_vivit_f1_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
126 |
+
self.iu_vivit_f2_3 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
|
127 |
+
self.iu_vivit_f3_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
|
128 |
+
print(f'ViViT initialized...')
|
129 |
+
|
130 |
+
# 4. llama
|
131 |
+
with open(os.path.join(llama_ckpt_dir, "params.json"), "r") as f:
|
132 |
+
params = json.loads(f.read())
|
133 |
+
bias_lora = True
|
134 |
+
|
135 |
+
if self.args.music_decoder.lower() == "audioldm2":
|
136 |
+
self.model_args: ModelArgs = ModelArgs(
|
137 |
+
max_seq_len=1024, max_batch_size=1, w_bias=bias_lora, w_lora=bias_lora,
|
138 |
+
num_output_tokens=1, output_dim_tokens=137216,
|
139 |
+
**params) # max_batch_size only affects inference
|
140 |
+
else:
|
141 |
+
self.model_args: ModelArgs = ModelArgs(
|
142 |
+
max_seq_len=1024, max_batch_size=1, w_bias=bias_lora, w_lora=bias_lora,
|
143 |
+
num_output_tokens=128, output_dim_tokens=768,
|
144 |
+
**params) # max_batch_size only affects inference
|
145 |
+
print(f"model args: {self.model_args}")
|
146 |
+
|
147 |
+
# 5. tokenizer
|
148 |
+
self.tokenizer = LlamaTokenizer.from_pretrained(
|
149 |
+
llama_tokenizer) # Tokenizer(model_path=llama_tokenizer, num_aud_tokens=self.model_args.num_gen_audio_tokens)
|
150 |
+
self._add_audio_token()
|
151 |
+
self.model_args.vocab_size = len(self.tokenizer)
|
152 |
+
|
153 |
+
if torch.cuda.is_available():
|
154 |
+
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
155 |
+
self.llama = Transformer(self.model_args)
|
156 |
+
torch.set_default_tensor_type(torch.FloatTensor)
|
157 |
+
|
158 |
+
if load_llama:
|
159 |
+
print(f"Loading LLaMA Checkpoint...")
|
160 |
+
ckpts = sorted(Path(llama_ckpt_dir).glob("*.pth"))
|
161 |
+
|
162 |
+
"""
|
163 |
+
Adapted from https://github.com/cedrickchee/llama/blob/main/chattyllama/combined/inference.py
|
164 |
+
"""
|
165 |
+
key_to_dim = {
|
166 |
+
"w1": 0,
|
167 |
+
"w2": -1,
|
168 |
+
"w3": 0,
|
169 |
+
"wo": -1,
|
170 |
+
"wq": 0,
|
171 |
+
"wk": 0,
|
172 |
+
"wv": 0,
|
173 |
+
"output": 0,
|
174 |
+
"tok_embeddings": 2,
|
175 |
+
"ffn_norm": None,
|
176 |
+
"attention_norm": None,
|
177 |
+
"norm": None,
|
178 |
+
"rope": None,
|
179 |
+
}
|
180 |
+
for i, ckpt in enumerate(ckpts):
|
181 |
+
checkpoint = torch.load(ckpt, map_location="cpu")
|
182 |
+
for parameter_name, parameter in self.llama.named_parameters():
|
183 |
+
short_name = parameter_name.split(".")[-2]
|
184 |
+
if "gate" in parameter_name or "lora" in parameter_name or "bias" in parameter_name:
|
185 |
+
continue
|
186 |
+
if key_to_dim[short_name] is None and i == 0:
|
187 |
+
parameter.data = checkpoint[parameter_name]
|
188 |
+
elif key_to_dim[short_name] == 0:
|
189 |
+
size = checkpoint[parameter_name].size(0)
|
190 |
+
parameter.data[size * i: size * (i + 1), :] = checkpoint[
|
191 |
+
parameter_name
|
192 |
+
]
|
193 |
+
elif key_to_dim[short_name] == -1:
|
194 |
+
size = checkpoint[parameter_name].size(-1)
|
195 |
+
parameter.data[:, size * i: size * (i + 1)] = checkpoint[
|
196 |
+
parameter_name
|
197 |
+
]
|
198 |
+
elif key_to_dim[short_name] == 2:
|
199 |
+
size = checkpoint[parameter_name].size(-1)
|
200 |
+
parameter.data[:-self.model_args.num_gen_audio_tokens, size * i: size * (i + 1)] = checkpoint[
|
201 |
+
parameter_name
|
202 |
+
]
|
203 |
+
parameter.data[-self.model_args.num_gen_audio_tokens:, :] = 1
|
204 |
+
del checkpoint
|
205 |
+
print(f"LLaMA Checkpoint Loaded")
|
206 |
+
|
207 |
+
# 5. projector
|
208 |
+
self.output_projector = ProjectionLayer(4096, self.model_args.output_dim_tokens,
|
209 |
+
num_input_tokens=self.model_args.num_gen_audio_tokens,
|
210 |
+
num_output_tokens=self.model_args.num_output_tokens)
|
211 |
+
|
212 |
+
# 6. Generator
|
213 |
+
if self.args.music_decoder.lower() == "audioldm2":
|
214 |
+
# The model files for AudioLDM2 can be downloaded here in case of network issues:
|
215 |
+
# https://huggingface.co/cvssp/audioldm2-music
|
216 |
+
# And set the music_decoder_path argument to directory with the model files
|
217 |
+
print(f'Initialize AudioLDM2...')
|
218 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
219 |
+
self.generation_model = AudioLDM2Pipeline.from_pretrained(self.args.music_decoder_path, torch_dtype=dtype)
|
220 |
+
self.generation_model.to("cuda")
|
221 |
+
print(f'AudioLDM2 initialized...')
|
222 |
+
else:
|
223 |
+
# The model files for MusicGen can be downloaded here in case of network issues:
|
224 |
+
# https://huggingface.co/facebook/musicgen-medium
|
225 |
+
# And set the music_decoder_path argument to directory with the model files
|
226 |
+
print(f'Initialize MusicGen...')
|
227 |
+
self.generation_processor = AutoProcessor.from_pretrained(self.args.music_decoder_path)
|
228 |
+
self.generation_model = MusicgenForConditionalGeneration.from_pretrained(self.args.music_decoder_path)
|
229 |
+
self.generation_model.eval()
|
230 |
+
print(f'MusicGen initialized...')
|
231 |
+
self.music_decoder = self.args.music_decoder.lower()
|
232 |
+
|
233 |
+
# 4. prefix
|
234 |
+
self.query_layer = 20
|
235 |
+
self.query_len = 1
|
236 |
+
self.prefix_query = nn.Embedding(self.query_layer * self.query_len, self.model_args.dim)
|
237 |
+
|
238 |
+
# 5. knn
|
239 |
+
self.knn = knn
|
240 |
+
if knn:
|
241 |
+
import faiss
|
242 |
+
self.index = faiss.read_index(download("https://huggingface.co/csuhan/knn/resolve/main/knn.index", knn_dir))
|
243 |
+
|
244 |
+
# 6. training criterion
|
245 |
+
self.criterion = torch.nn.CrossEntropyLoss(ignore_index=0)
|
246 |
+
self.l2_loss = torch.nn.MSELoss()
|
247 |
+
self.stage = stage
|
248 |
+
self.set_default_trainability(self.stage)
|
249 |
+
|
250 |
+
def get_trainable_params(self, stage=1):
|
251 |
+
trainable = {}
|
252 |
+
if stage == 1:
|
253 |
+
for name, para in self.named_parameters():
|
254 |
+
if "llama." in name:
|
255 |
+
if 'norm' in name or 'bias' in name or 'lora' in name:
|
256 |
+
trainable[name] = para
|
257 |
+
if "mu_mert_" in name:
|
258 |
+
trainable[name] = para
|
259 |
+
if "iu_vivit_" in name:
|
260 |
+
trainable[name] = para
|
261 |
+
if "iu_vit_" in name:
|
262 |
+
trainable[name] = para
|
263 |
+
if "prefix_query" in name:
|
264 |
+
trainable[name] = para
|
265 |
+
if "output_projector" in name:
|
266 |
+
trainable[name] = para
|
267 |
+
if "tok_embeddings" in name:
|
268 |
+
trainable[name] = para
|
269 |
+
elif stage == 2:
|
270 |
+
for name, para in self.named_parameters():
|
271 |
+
if "llama." in name:
|
272 |
+
if 'norm' in name or 'bias' in name or 'lora' in name:
|
273 |
+
trainable[name] = para
|
274 |
+
if "output_projector" in name:
|
275 |
+
trainable[name] = para
|
276 |
+
if "prefix_query" in name:
|
277 |
+
trainable[name] = para
|
278 |
+
if "tok_embeddings" in name:
|
279 |
+
trainable[name] = para
|
280 |
+
elif stage == 3:
|
281 |
+
for name, para in self.named_parameters():
|
282 |
+
if "llama." in name:
|
283 |
+
if 'norm' in name or 'bias' in name or 'lora' in name:
|
284 |
+
trainable[name] = para
|
285 |
+
elif "prefix_query" in name:
|
286 |
+
trainable[name] = para
|
287 |
+
elif "tok_embeddings" in name:
|
288 |
+
trainable[name] = para
|
289 |
+
return trainable
|
290 |
+
|
291 |
+
def set_default_trainability(self, stage=1):
|
292 |
+
for key, value in self.named_parameters():
|
293 |
+
value.requires_grad = False
|
294 |
+
trainable_params = self.get_trainable_params(stage)
|
295 |
+
print(f"Trainable Params: {trainable_params.keys()}")
|
296 |
+
for key, value in trainable_params.items():
|
297 |
+
value.data = value.data.float()
|
298 |
+
value.requires_grad = True
|
299 |
+
|
300 |
+
def _add_audio_token(self):
|
301 |
+
self.audio_tokens = []
|
302 |
+
for i in range(self.model_args.num_gen_audio_tokens):
|
303 |
+
print(f'Adding [AUD{i}] token to vocabulary.')
|
304 |
+
print(f'Before adding new token, tokenizer("[AUD{i}]") =',
|
305 |
+
self.tokenizer(f'[AUD{i}]', add_special_tokens=False))
|
306 |
+
num_added_tokens = self.tokenizer.add_tokens([f'[AUD{i}]'])
|
307 |
+
print(f'After adding {num_added_tokens} new tokens, tokenizer("[AUD{i}]") =',
|
308 |
+
self.tokenizer(f'[AUD{i}]', add_special_tokens=False), ' Number of tokens: ', len(self.tokenizer))
|
309 |
+
gen_token_idx = self.tokenizer(f'[AUD{i}]', add_special_tokens=False).input_ids
|
310 |
+
assert len(gen_token_idx) == 1, gen_token_idx
|
311 |
+
self.audio_tokens.append(gen_token_idx[0])
|
312 |
+
|
313 |
+
def load_audio(self, audio_path, target_sr=16000):
|
314 |
+
y, sr = torchaudio.load(audio_path)
|
315 |
+
resampler = torchaudio.transforms.Resample(sr, target_sr, dtype=y.dtype)
|
316 |
+
audio = resampler(y)
|
317 |
+
return audio, target_sr
|
318 |
+
|
319 |
+
def encode_audio(self, x):
|
320 |
+
xs = []
|
321 |
+
for sub_x in x:
|
322 |
+
all_inputs = [self.mert_processor(sub_x[ix * self.mert_processor.sampling_rate:min(
|
323 |
+
(ix + 60) * self.mert_processor.sampling_rate, len(sub_x))],
|
324 |
+
sampling_rate=self.mert_processor.sampling_rate,
|
325 |
+
return_tensors="pt").to(self.mert_model.device) for ix in
|
326 |
+
range(0, len(sub_x) // (self.mert_processor.sampling_rate * 60) + 1, 60)]
|
327 |
+
aggoutputs = torch.zeros(1, 25, 1024).to(self.mert_model.device)
|
328 |
+
for inputs in all_inputs:
|
329 |
+
with torch.no_grad():
|
330 |
+
outputs = self.mert_model(**inputs, output_hidden_states=True)
|
331 |
+
all_layer_hidden_states = torch.stack(outputs.hidden_states).squeeze()
|
332 |
+
sub_x = all_layer_hidden_states.mean(-2).unsqueeze(0)
|
333 |
+
aggoutputs += sub_x
|
334 |
+
aggoutputs /= len(all_inputs)
|
335 |
+
sub_x = self.mu_mert_agg(aggoutputs.to(self.device)).squeeze()
|
336 |
+
del aggoutputs
|
337 |
+
xs.append(sub_x)
|
338 |
+
x = torch.stack(xs, dim=0)
|
339 |
+
return x
|
340 |
+
|
341 |
+
def encode_image(self, x):
|
342 |
+
xs = []
|
343 |
+
for sub_x in x:
|
344 |
+
inputs = self.vit_processor(images=sub_x, return_tensors="pt").to(self.vit_model.device)
|
345 |
+
with torch.no_grad():
|
346 |
+
outputs = self.vit_model(**inputs)
|
347 |
+
last_hidden_states = outputs.last_hidden_state
|
348 |
+
sub_x = self.iu_vit_agg(last_hidden_states.to(self.device)).squeeze()
|
349 |
+
xs.append(sub_x)
|
350 |
+
return torch.stack(xs, dim=0)
|
351 |
+
|
352 |
+
def encode_video(self, x):
|
353 |
+
xs = []
|
354 |
+
for sub_x in x:
|
355 |
+
inputs = self.vivit_processor(list(sub_x), padding=True, return_tensors="pt").to(self.vivit_model.device)
|
356 |
+
with torch.no_grad():
|
357 |
+
outputs = self.vivit_model(**inputs)
|
358 |
+
last_hidden_states = outputs.last_hidden_state
|
359 |
+
sub_x = self.iu_vivit_agg(last_hidden_states.to(self.device)).squeeze()
|
360 |
+
xs.append(sub_x)
|
361 |
+
return torch.stack(xs, dim=0)
|
362 |
+
|
363 |
+
def forward_audio(self, inputs, cache_size=10, cache_t=20, cache_weight=0.5):
|
364 |
+
outputs = []
|
365 |
+
outputs_weights = []
|
366 |
+
for input_type, (input, input_weight) in inputs.items():
|
367 |
+
outputs.append(F.normalize(self.encode_audio(input), dim=-1))
|
368 |
+
outputs_weights.append(input_weight)
|
369 |
+
outputs_weights = [x / (sum(outputs_weights) + 1e-6) for x in outputs_weights]
|
370 |
+
|
371 |
+
audio_feats = sum([output * output_weight for output, output_weight in zip(outputs, outputs_weights)])
|
372 |
+
device = audio_feats.device
|
373 |
+
|
374 |
+
if self.knn:
|
375 |
+
audio_feats_ori = audio_feats
|
376 |
+
sims, indices = self.index.search(audio_feats.cpu(), int(cache_size))
|
377 |
+
B = sims.shape[0]
|
378 |
+
prototypes = [self.index.reconstruct(x) for x in indices.reshape(-1, ).tolist()]
|
379 |
+
prototypes = np.vstack(prototypes).reshape(B, int(cache_size), -1) # [N, top_k, 1024]
|
380 |
+
sims = torch.tensor(sims, device=device)
|
381 |
+
prototypes = torch.tensor(prototypes, device=device)
|
382 |
+
|
383 |
+
sims = (sims * cache_t).softmax(dim=-1)
|
384 |
+
audio_feats = sims @ prototypes
|
385 |
+
audio_feats = audio_feats / audio_feats.norm(dim=-1, keepdim=True)
|
386 |
+
|
387 |
+
audio_feats = (1 - cache_weight) * audio_feats_ori + cache_weight * audio_feats
|
388 |
+
audio_feats = audio_feats / audio_feats.norm(dim=-1, keepdim=True)
|
389 |
+
|
390 |
+
audio_feats = audio_feats.unsqueeze(1) # B, 1, D
|
391 |
+
audio_feats = self.mu_mert_proj(audio_feats)
|
392 |
+
audio_feats_norm = self.mu_mert_norm_1(audio_feats)
|
393 |
+
audio_feats = audio_feats + self.mu_mert_f2_1(
|
394 |
+
F.silu(self.mu_mert_f1_1(audio_feats_norm)) * self.mu_mert_f3_1(audio_feats_norm))
|
395 |
+
|
396 |
+
audio_feats_norm = self.mu_mert_norm_2(audio_feats)
|
397 |
+
audio_feats = audio_feats + self.mu_mert_f2_2(
|
398 |
+
F.silu(self.mu_mert_f1_2(audio_feats_norm)) * self.mu_mert_f3_2(audio_feats_norm))
|
399 |
+
|
400 |
+
audio_feats_norm = self.mu_mert_norm_3(audio_feats)
|
401 |
+
audio_feats = audio_feats + self.mu_mert_f2_3(
|
402 |
+
F.silu(self.mu_mert_f1_3(audio_feats_norm)) * self.mu_mert_f3_3(audio_feats_norm))
|
403 |
+
return audio_feats
|
404 |
+
|
405 |
+
def forward_image(self, inputs, cache_size=10, cache_t=20, cache_weight=0.5):
|
406 |
+
outputs = []
|
407 |
+
outputs_weights = []
|
408 |
+
for input_type, (input, input_weight) in inputs.items():
|
409 |
+
outputs.append(F.normalize(self.encode_image(input), dim=-1))
|
410 |
+
outputs_weights.append(input_weight)
|
411 |
+
outputs_weights = [x / (sum(outputs_weights) + 1e-6) for x in outputs_weights]
|
412 |
+
|
413 |
+
image_feats = sum([output * output_weight for output, output_weight in zip(outputs, outputs_weights)])
|
414 |
+
device = image_feats.device
|
415 |
+
|
416 |
+
if self.knn:
|
417 |
+
image_feats_ori = image_feats
|
418 |
+
sims, indices = self.index.search(image_feats.cpu(), int(cache_size))
|
419 |
+
B = sims.shape[0]
|
420 |
+
prototypes = [self.index.reconstruct(x) for x in indices.reshape(-1, ).tolist()]
|
421 |
+
prototypes = np.vstack(prototypes).reshape(B, int(cache_size), -1) # [N, top_k, 1024]
|
422 |
+
sims = torch.tensor(sims, device=device)
|
423 |
+
prototypes = torch.tensor(prototypes, device=device)
|
424 |
+
|
425 |
+
sims = (sims * cache_t).softmax(dim=-1)
|
426 |
+
image_feats = sims @ prototypes
|
427 |
+
image_feats = image_feats / image_feats.norm(dim=-1, keepdim=True)
|
428 |
+
|
429 |
+
image_feats = (1 - cache_weight) * image_feats_ori + cache_weight * image_feats
|
430 |
+
image_feats = image_feats / image_feats.norm(dim=-1, keepdim=True)
|
431 |
+
|
432 |
+
image_feats = image_feats.unsqueeze(1) # B, 1, D
|
433 |
+
image_feats = self.iu_vit_proj(image_feats)
|
434 |
+
image_feats_norm = self.iu_vit_norm_1(image_feats)
|
435 |
+
image_feats = image_feats + self.iu_vit_f2_1(
|
436 |
+
F.silu(self.iu_vit_f1_1(image_feats_norm)) * self.iu_vit_f3_1(image_feats_norm))
|
437 |
+
|
438 |
+
image_feats_norm = self.iu_vit_norm_2(image_feats)
|
439 |
+
image_feats = image_feats + self.iu_vit_f2_2(
|
440 |
+
F.silu(self.iu_vit_f1_2(image_feats_norm)) * self.iu_vit_f3_2(image_feats_norm))
|
441 |
+
|
442 |
+
image_feats_norm = self.iu_vit_norm_3(image_feats)
|
443 |
+
image_feats = image_feats + self.iu_vit_f2_3(
|
444 |
+
F.silu(self.iu_vit_f1_3(image_feats_norm)) * self.iu_vit_f3_3(image_feats_norm))
|
445 |
+
return image_feats
|
446 |
+
|
447 |
+
def forward_video(self, inputs, cache_size=10, cache_t=20, cache_weight=0.5):
|
448 |
+
outputs = []
|
449 |
+
outputs_weights = []
|
450 |
+
for input_type, (input, input_weight) in inputs.items():
|
451 |
+
outputs.append(F.normalize(self.encode_video(input), dim=-1))
|
452 |
+
outputs_weights.append(input_weight)
|
453 |
+
outputs_weights = [x / (sum(outputs_weights) + 1e-6) for x in outputs_weights]
|
454 |
+
|
455 |
+
video_feats = sum([output * output_weight for output, output_weight in zip(outputs, outputs_weights)])
|
456 |
+
device = video_feats.device
|
457 |
+
|
458 |
+
if self.knn:
|
459 |
+
video_feats_ori = video_feats
|
460 |
+
sims, indices = self.index.search(video_feats.cpu(), int(cache_size))
|
461 |
+
B = sims.shape[0]
|
462 |
+
prototypes = [self.index.reconstruct(x) for x in indices.reshape(-1, ).tolist()]
|
463 |
+
prototypes = np.vstack(prototypes).reshape(B, int(cache_size), -1) # [N, top_k, 1024]
|
464 |
+
sims = torch.tensor(sims, device=device)
|
465 |
+
prototypes = torch.tensor(prototypes, device=device)
|
466 |
+
|
467 |
+
sims = (sims * cache_t).softmax(dim=-1)
|
468 |
+
video_feats = sims @ prototypes
|
469 |
+
video_feats = video_feats / video_feats.norm(dim=-1, keepdim=True)
|
470 |
+
|
471 |
+
video_feats = (1 - cache_weight) * video_feats_ori + cache_weight * video_feats
|
472 |
+
video_feats = video_feats / video_feats.norm(dim=-1, keepdim=True)
|
473 |
+
|
474 |
+
video_feats = video_feats.unsqueeze(1) # B, 1, D
|
475 |
+
video_feats = self.iu_vivit_proj(video_feats)
|
476 |
+
video_feats_norm = self.iu_vivit_norm_1(video_feats)
|
477 |
+
video_feats = video_feats + self.iu_vivit_f2_1(
|
478 |
+
F.silu(self.iu_vivit_f1_1(video_feats_norm)) * self.iu_vivit_f3_1(video_feats_norm))
|
479 |
+
|
480 |
+
video_feats_norm = self.iu_vivit_norm_2(video_feats)
|
481 |
+
video_feats = video_feats + self.iu_vivit_f2_2(
|
482 |
+
F.silu(self.iu_vivit_f1_2(video_feats_norm)) * self.iu_vivit_f3_2(video_feats_norm))
|
483 |
+
|
484 |
+
video_feats_norm = self.iu_vivit_norm_3(video_feats)
|
485 |
+
video_feats = video_feats + self.iu_vivit_f2_3(
|
486 |
+
F.silu(self.iu_vivit_f1_3(video_feats_norm)) * self.iu_vivit_f3_3(video_feats_norm))
|
487 |
+
return video_feats
|
488 |
+
|
489 |
+
@torch.inference_mode()
|
490 |
+
def forward_inference(self, tokens, start_pos: int, audio_feats=None, image_feats=None, video_feats=None):
|
491 |
+
_bsz, seqlen = tokens.shape
|
492 |
+
h = self.llama.tok_embeddings(tokens)
|
493 |
+
freqs_cis = self.llama.freqs_cis.to(h.device)
|
494 |
+
freqs_cis = freqs_cis[start_pos:start_pos + seqlen]
|
495 |
+
|
496 |
+
feats = torch.zeros((1, 1, 4096)).to(self.device)
|
497 |
+
if audio_feats is not None:
|
498 |
+
feats += audio_feats
|
499 |
+
if video_feats is not None:
|
500 |
+
feats += video_feats
|
501 |
+
if image_feats is not None:
|
502 |
+
feats += image_feats
|
503 |
+
|
504 |
+
mask = None
|
505 |
+
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=h.device)
|
506 |
+
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
|
507 |
+
|
508 |
+
music_output_embedding = []
|
509 |
+
for layer in self.llama.layers[:-1 * self.query_layer]:
|
510 |
+
h = layer(h, 0, freqs_cis, mask)
|
511 |
+
music_output_embedding.append(h)
|
512 |
+
|
513 |
+
prefix_query = self.prefix_query.weight.reshape(self.query_layer, 1, 4096).unsqueeze(1)
|
514 |
+
|
515 |
+
prefix_index = 0
|
516 |
+
for layer in self.llama.layers[-1 * self.query_layer:]:
|
517 |
+
h = layer(h, 0, freqs_cis, mask, feats + prefix_query[prefix_index])
|
518 |
+
prefix_index = prefix_index + 1
|
519 |
+
|
520 |
+
h = self.llama.norm(h)
|
521 |
+
output = self.llama.output(h[:, -1, :])
|
522 |
+
|
523 |
+
return output.float(), torch.cat(music_output_embedding[-1:], dim=1)
|
524 |
+
|
525 |
+
def forward(self, tokens, labels, audios=None, imgs=None, videos=None, music_caption=None):
|
526 |
+
feats = torch.zeros((1, 1, 4096)).to(self.device)
|
527 |
+
if audios is not None:
|
528 |
+
feats += self.forward_audio({'Audio': [audios, 1]})
|
529 |
+
if videos is not None:
|
530 |
+
feats += self.forward_video({'Video': [videos, 1]})
|
531 |
+
if imgs is not None:
|
532 |
+
feats += self.forward_image({'Image': [imgs, 1]})
|
533 |
+
_bsz, seqlen = tokens.shape
|
534 |
+
|
535 |
+
h = self.llama.tok_embeddings(tokens.to(self.device))
|
536 |
+
freqs_cis = self.llama.freqs_cis.to(h.device)
|
537 |
+
freqs_cis = freqs_cis[:seqlen]
|
538 |
+
mask = None
|
539 |
+
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=h.device)
|
540 |
+
mask = torch.triu(mask, diagonal=0 + 1).type_as(h)
|
541 |
+
|
542 |
+
for layer in self.llama.layers[:-1 * self.query_layer]:
|
543 |
+
h = layer(h, 0, freqs_cis, mask)
|
544 |
+
prefix_query = self.prefix_query.weight.reshape(self.query_layer, 1, 4096).unsqueeze(1)
|
545 |
+
prefix_index = 0
|
546 |
+
|
547 |
+
for layer in self.llama.layers[-1 * self.query_layer:]:
|
548 |
+
h = layer(h, 0, freqs_cis, mask, feats + prefix_query[prefix_index])
|
549 |
+
prefix_index = prefix_index + 1
|
550 |
+
|
551 |
+
final_hidden = h
|
552 |
+
h = self.llama.norm(h)
|
553 |
+
output = self.llama.output(h)
|
554 |
+
output = output[:, :-1, :]
|
555 |
+
labels = labels[:, 1:]
|
556 |
+
|
557 |
+
if labels.sum() == 0:
|
558 |
+
c_loss = output.mean() * 0
|
559 |
+
else:
|
560 |
+
assert self.llama.vocab_size == 32000 + self.model_args.num_gen_audio_tokens, self.llama.vocab_size
|
561 |
+
c_loss = self.criterion(output.reshape(-1, self.llama.vocab_size), labels.flatten().to(self.device))
|
562 |
+
|
563 |
+
if music_caption is not None and any([mc != '' for mc in music_caption]):
|
564 |
+
if not all([i in output for i in range(32000, 32008)]):
|
565 |
+
c_loss += 100
|
566 |
+
if self.music_decoder == "audioldm2":
|
567 |
+
prompt_embeds, generated_prompt_embeds = self.generation_model(prompt=list(music_caption),
|
568 |
+
guidance_scale=1,
|
569 |
+
return_prompts_only=True)
|
570 |
+
prompt_embeds = prompt_embeds.reshape(prompt_embeds.shape[0], -1)
|
571 |
+
generated_prompt_embeds = generated_prompt_embeds.reshape(generated_prompt_embeds.shape[0], -1)
|
572 |
+
out_embed = torch.cat([prompt_embeds, generated_prompt_embeds], dim=1)
|
573 |
+
out_embed = 10 * out_embed.view(out_embed.size(0), 1, out_embed.size(1)).to(self.device)
|
574 |
+
else:
|
575 |
+
gen_inputs = self.generation_processor(text=music_caption, padding='max_length',
|
576 |
+
max_length=128, truncation=True, return_tensors="pt").to(
|
577 |
+
self.device)
|
578 |
+
out_embed = 10 * self.generation_model.generate(**gen_inputs, guidance_scale=1, encoder_only=True)
|
579 |
+
del gen_inputs
|
580 |
+
start_pos = (labels == self.audio_tokens[0]).nonzero(as_tuple=False)[:, 1].tolist()
|
581 |
+
assert len(start_pos) != 0, (self.tokenizer.batch_decode(labels), music_caption)
|
582 |
+
hidden_states = []
|
583 |
+
hidden_embedding = []
|
584 |
+
input_embedding = []
|
585 |
+
for b, s in enumerate(start_pos):
|
586 |
+
hidden_embedding.append(final_hidden[b, s:s + self.model_args.num_gen_audio_tokens, :])
|
587 |
+
input_embedding.append(
|
588 |
+
self.llama.tok_embeddings(labels[b, s:s + self.model_args.num_gen_audio_tokens].to(self.device)))
|
589 |
+
hidden_embedding = torch.stack(hidden_embedding, dim=0).to(self.device)
|
590 |
+
input_embedding = torch.stack(input_embedding, dim=0).to(self.device)
|
591 |
+
hidden_states.append(self.output_projector(hidden_embedding, input_embedding))
|
592 |
+
embeddings = torch.stack(hidden_states, dim=-1).sum(dim=-1)
|
593 |
+
mse_loss = self.l2_loss(embeddings, out_embed)
|
594 |
+
del hidden_states, input_embedding, hidden_embedding, out_embed, embeddings
|
595 |
+
# c_loss += mse_loss
|
596 |
+
else:
|
597 |
+
if any([i in output for i in range(32000, 32008)]):
|
598 |
+
c_loss += 100
|
599 |
+
mse_loss = torch.tensor(0.0)
|
600 |
+
del feats
|
601 |
+
return c_loss, mse_loss
|
602 |
+
|
603 |
+
@torch.inference_mode()
|
604 |
+
def generate_music(self, embeddings, audio_length_in_s, music_caption):
|
605 |
+
gen_prefix = ''.join([f'[AUD{i}]' for i in range(len(self.audio_tokens))])
|
606 |
+
gen_prefx_ids = self.tokenizer(gen_prefix, add_special_tokens=False, return_tensors="pt").input_ids.to(
|
607 |
+
self.device)
|
608 |
+
gen_prefix_embs = self.llama.tok_embeddings(gen_prefx_ids)
|
609 |
+
if self.music_decoder == "audioldm2":
|
610 |
+
gen_emb = self.output_projector(embeddings.float().to("cuda"), gen_prefix_embs).squeeze(dim=0) / 10
|
611 |
+
prompt_embeds, generated_prompt_embeds = gen_emb[:, :128 * 1024], gen_emb[:, 128 * 1024:]
|
612 |
+
prompt_embeds = prompt_embeds.reshape(prompt_embeds.shape[0], 128, 1024)
|
613 |
+
generated_prompt_embeds = generated_prompt_embeds.reshape(generated_prompt_embeds.shape[0], 8, 768)
|
614 |
+
print("Generating Music...")
|
615 |
+
print(music_caption)
|
616 |
+
audio_outputs = self.generation_model(music_caption,
|
617 |
+
num_inference_steps=200,
|
618 |
+
num_waveforms_per_prompt=3,
|
619 |
+
negative_prompt='Low quality.',
|
620 |
+
audio_length_in_s=audio_length_in_s).audios
|
621 |
+
return audio_outputs
|
622 |
+
else:
|
623 |
+
print("Generating Music...")
|
624 |
+
gen_emb = 0.1 * self.output_projector(embeddings.float().to("cuda"), gen_prefix_embs) / 10
|
625 |
+
gen_inputs = self.generation_processor(text=music_caption, padding='max_length',
|
626 |
+
max_length=128, truncation=True, return_tensors="pt").to(
|
627 |
+
self.device)
|
628 |
+
#gen_emb = self.generation_model.generate(**gen_inputs, guidance_scale=3.5, encoder_only=True)
|
629 |
+
audio_outputs = self.generation_model.generate(**gen_inputs, guidance_scale=3.5,
|
630 |
+
max_new_tokens=int(256 / 5 * audio_length_in_s))
|
631 |
+
#encoder_outputs=(gen_emb,))
|
632 |
+
return audio_outputs[0][0].cpu().detach().numpy()
|
633 |
+
|
634 |
+
@torch.inference_mode()
|
635 |
+
def generate(
|
636 |
+
self,
|
637 |
+
prompts,
|
638 |
+
audios=None,
|
639 |
+
imgs=None,
|
640 |
+
videos=None,
|
641 |
+
max_gen_len: int = 100,
|
642 |
+
temperature: float = 0.1,
|
643 |
+
top_p: float = 0.75,
|
644 |
+
cache_size=10,
|
645 |
+
cache_t=20,
|
646 |
+
cache_weight=0.5,
|
647 |
+
audio_length_in_s=10
|
648 |
+
):
|
649 |
+
bsz = len(prompts)
|
650 |
+
params = self.llama.params
|
651 |
+
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
|
652 |
+
|
653 |
+
with torch.cuda.amp.autocast():
|
654 |
+
if audios is not None:
|
655 |
+
audio_feats = self.forward_audio({'Audio': [[audios], 1]}, cache_size, cache_t, cache_weight)
|
656 |
+
else:
|
657 |
+
audio_feats = None
|
658 |
+
if videos is not None:
|
659 |
+
video_feats = self.forward_video({'Video': [[videos], 1]}, cache_size, cache_t, cache_weight)
|
660 |
+
else:
|
661 |
+
video_feats = None
|
662 |
+
if imgs is not None:
|
663 |
+
image_feats = self.forward_image({'Image': [[imgs], 1]}, cache_size, cache_t, cache_weight)
|
664 |
+
else:
|
665 |
+
image_feats = None
|
666 |
+
|
667 |
+
if isinstance(prompts[0], str):
|
668 |
+
prompts = [self.tokenizer(x).input_ids[:, 1:] for x in prompts]
|
669 |
+
|
670 |
+
min_prompt_size = min([len(t) for t in prompts])
|
671 |
+
max_prompt_size = max([len(t) for t in prompts])
|
672 |
+
|
673 |
+
total_len = min(params.max_seq_len, max_gen_len + max_prompt_size)
|
674 |
+
|
675 |
+
tokens = torch.full((bsz, total_len), 0).cuda().long()
|
676 |
+
|
677 |
+
for k, t in enumerate(prompts):
|
678 |
+
tokens[k, : len(t)] = torch.tensor(t).cuda().long()
|
679 |
+
input_text_mask = tokens != 0
|
680 |
+
start_pos = min_prompt_size
|
681 |
+
prev_pos = 0
|
682 |
+
music_output_embeddings = []
|
683 |
+
start_gather = 0
|
684 |
+
for cur_pos in range(start_pos, total_len):
|
685 |
+
with torch.cuda.amp.autocast():
|
686 |
+
logits, music_output_embedding = self.forward_inference(tokens[:, prev_pos:cur_pos], prev_pos,
|
687 |
+
audio_feats, image_feats, video_feats)
|
688 |
+
if temperature > 0:
|
689 |
+
probs = torch.softmax(logits / temperature, dim=-1)
|
690 |
+
next_token = sample_top_p(probs, top_p)
|
691 |
+
else:
|
692 |
+
next_token = torch.argmax(logits, dim=-1)
|
693 |
+
next_token = next_token.reshape(-1)
|
694 |
+
|
695 |
+
next_token = torch.where(
|
696 |
+
input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
|
697 |
+
)
|
698 |
+
tokens[:, cur_pos] = next_token
|
699 |
+
if next_token[0] == self.audio_tokens[start_gather]:
|
700 |
+
if start_gather == 0:
|
701 |
+
music_output_embeddings = []
|
702 |
+
music_output_embeddings.append(music_output_embedding[:, -1:, :])
|
703 |
+
start_gather += 1
|
704 |
+
if start_gather >= len(self.audio_tokens):
|
705 |
+
start_gather = 0
|
706 |
+
# trick: early stop if bsz==1
|
707 |
+
if bsz == 1 and self.tokenizer.decode(tokens[0, cur_pos - 2:cur_pos + 1]) == "\n###":
|
708 |
+
break
|
709 |
+
# prev_pos = cur_pos
|
710 |
+
|
711 |
+
decoded = []
|
712 |
+
for i, t in enumerate(tokens.tolist()):
|
713 |
+
|
714 |
+
# cut to max gen len
|
715 |
+
t = t[len(prompts[i]): len(prompts[i]) + max_gen_len]
|
716 |
+
# cut to eos tok if any
|
717 |
+
try:
|
718 |
+
t = t[: t.index(13)]
|
719 |
+
except ValueError:
|
720 |
+
pass
|
721 |
+
decoded.append(self.tokenizer.decode(t))
|
722 |
+
|
723 |
+
if len(music_output_embeddings) == len(self.audio_tokens):
|
724 |
+
music_output_embeddings = torch.cat(music_output_embeddings, dim=1)
|
725 |
+
return [decoded[0], {'aud': [self.generate_music(music_output_embeddings, audio_length_in_s, decoded[0])]}]
|
726 |
+
|
727 |
+
return [decoded[0]]
|
728 |
+
|
729 |
+
|
730 |
+
def load(model_path, llama_dir, mert_path="m-a-p/MERT-v1-330M", device="cuda" if torch.cuda.is_available() else "cpu",
|
731 |
+
knn=False, knn_dir="./ckpts", llama_type="7B", stage=3):
|
732 |
+
llama_ckpt_dir = os.path.join(llama_dir, llama_type)
|
733 |
+
llama_tokenzier_path = llama_dir
|
734 |
+
|
735 |
+
# load M2UGen weights and model_cfg
|
736 |
+
print(f'Loading LLaMA-Adapter from {model_path}')
|
737 |
+
adapter_ckpt = torch.load(model_path, map_location='cpu')
|
738 |
+
model_cfg = adapter_ckpt.get('config', {})
|
739 |
+
|
740 |
+
# The model files for MERT can be downloaded here in case of network issues:
|
741 |
+
# https://huggingface.co/m-a-p/MERT-v1-330M
|
742 |
+
# And set the MERT argument to directory with the model files
|
743 |
+
model = M2UGen(
|
744 |
+
llama_ckpt_dir, llama_tokenzier_path, mert_path, knn=knn, knn_dir=knn_dir, stage=stage)
|
745 |
+
|
746 |
+
load_result = model.load_state_dict(adapter_ckpt['model'], strict=False)
|
747 |
+
assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
|
748 |
+
return model.to(device)
|
llama/musicgen/configuration_musicgen.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" MusicGen model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
from transformers.models.auto.configuration_auto import AutoConfig
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
25 |
+
"facebook/musicgen-small": "https://huggingface.co/facebook/musicgen-small/resolve/main/config.json",
|
26 |
+
# See all Musicgen models at https://huggingface.co/models?filter=musicgen
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class MusicgenDecoderConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of an [`MusicgenDecoder`]. It is used to instantiate a
|
33 |
+
MusicGen decoder according to the specified arguments, defining the model architecture. Instantiating a
|
34 |
+
configuration with the defaults will yield a similar configuration to that of the MusicGen
|
35 |
+
[facebook/musicgen-small](https://huggingface.co/facebook/musicgen-small) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 2048):
|
43 |
+
Vocabulary size of the MusicgenDecoder model. Defines the number of different tokens that can be
|
44 |
+
represented by the `inputs_ids` passed when calling [`MusicgenDecoder`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 1024):
|
46 |
+
Dimensionality of the layers and the pooler layer.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
48 |
+
Number of decoder layers.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
50 |
+
Number of attention heads for each attention layer in the Transformer block.
|
51 |
+
ffn_dim (`int`, *optional*, defaults to 4096):
|
52 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block.
|
53 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
54 |
+
The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`,
|
55 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
56 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
57 |
+
The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler.
|
58 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
59 |
+
The dropout ratio for the attention probabilities.
|
60 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
61 |
+
The dropout ratio for activations inside the fully connected layer.
|
62 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
63 |
+
The maximum sequence length that this model might ever be used with. Typically, set this to something large
|
64 |
+
just in case (e.g., 512 or 1024 or 2048).
|
65 |
+
initializer_factor (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
layerdrop (`float`, *optional*, defaults to 0.0):
|
68 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
69 |
+
for more details.
|
70 |
+
scale_embedding (`bool`, *optional*, defaults to `False`):
|
71 |
+
Scale embeddings by diving by sqrt(hidden_size).
|
72 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether the model should return the last key/values attentions (not used by all models)
|
74 |
+
num_codebooks (`int`, *optional*, defaults to 4):
|
75 |
+
The number of parallel codebooks forwarded to the model.
|
76 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
77 |
+
Whether input and output word embeddings should be tied.
|
78 |
+
"""
|
79 |
+
model_type = "musicgen_decoder"
|
80 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
vocab_size=2048,
|
85 |
+
max_position_embeddings=2048,
|
86 |
+
num_hidden_layers=24,
|
87 |
+
ffn_dim=4096,
|
88 |
+
num_attention_heads=16,
|
89 |
+
layerdrop=0.0,
|
90 |
+
use_cache=True,
|
91 |
+
activation_function="gelu",
|
92 |
+
hidden_size=1024,
|
93 |
+
dropout=0.1,
|
94 |
+
attention_dropout=0.0,
|
95 |
+
activation_dropout=0.0,
|
96 |
+
initializer_factor=0.02,
|
97 |
+
scale_embedding=False,
|
98 |
+
num_codebooks=4,
|
99 |
+
pad_token_id=2048,
|
100 |
+
bos_token_id=2048,
|
101 |
+
eos_token_id=None,
|
102 |
+
tie_word_embeddings=False,
|
103 |
+
**kwargs,
|
104 |
+
):
|
105 |
+
self.vocab_size = vocab_size
|
106 |
+
self.max_position_embeddings = max_position_embeddings
|
107 |
+
self.hidden_size = hidden_size
|
108 |
+
self.ffn_dim = ffn_dim
|
109 |
+
self.num_hidden_layers = num_hidden_layers
|
110 |
+
self.num_attention_heads = num_attention_heads
|
111 |
+
self.dropout = dropout
|
112 |
+
self.attention_dropout = attention_dropout
|
113 |
+
self.activation_dropout = activation_dropout
|
114 |
+
self.activation_function = activation_function
|
115 |
+
self.initializer_factor = initializer_factor
|
116 |
+
self.layerdrop = layerdrop
|
117 |
+
self.use_cache = use_cache
|
118 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
119 |
+
self.num_codebooks = num_codebooks
|
120 |
+
super().__init__(
|
121 |
+
pad_token_id=pad_token_id,
|
122 |
+
bos_token_id=bos_token_id,
|
123 |
+
eos_token_id=eos_token_id,
|
124 |
+
tie_word_embeddings=tie_word_embeddings,
|
125 |
+
**kwargs,
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
class MusicgenConfig(PretrainedConfig):
|
130 |
+
r"""
|
131 |
+
This is the configuration class to store the configuration of a [`MusicgenModel`]. It is used to instantiate a
|
132 |
+
MusicGen model according to the specified arguments, defining the text encoder, audio encoder and MusicGen decoder
|
133 |
+
configs.
|
134 |
+
|
135 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
136 |
+
documentation from [`PretrainedConfig`] for more information.
|
137 |
+
|
138 |
+
Args:
|
139 |
+
kwargs (*optional*):
|
140 |
+
Dictionary of keyword arguments. Notably:
|
141 |
+
|
142 |
+
- **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
|
143 |
+
defines the text encoder config.
|
144 |
+
- **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
|
145 |
+
defines the audio encoder config.
|
146 |
+
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
|
147 |
+
the decoder config.
|
148 |
+
|
149 |
+
Example:
|
150 |
+
|
151 |
+
```python
|
152 |
+
>>> from transformers import (
|
153 |
+
... MusicgenConfig,
|
154 |
+
... MusicgenDecoderConfig,
|
155 |
+
... T5Config,
|
156 |
+
... EncodecConfig,
|
157 |
+
... MusicgenForConditionalGeneration,
|
158 |
+
... )
|
159 |
+
|
160 |
+
>>> # Initializing text encoder, audio encoder, and decoder model configurations
|
161 |
+
>>> text_encoder_config = T5Config()
|
162 |
+
>>> audio_encoder_config = EncodecConfig()
|
163 |
+
>>> decoder_config = MusicgenDecoderConfig()
|
164 |
+
|
165 |
+
>>> configuration = MusicgenConfig.from_sub_models_config(
|
166 |
+
... text_encoder_config, audio_encoder_config, decoder_config
|
167 |
+
... )
|
168 |
+
|
169 |
+
>>> # Initializing a MusicgenForConditionalGeneration (with random weights) from the facebook/musicgen-small style configuration
|
170 |
+
>>> model = MusicgenForConditionalGeneration(configuration)
|
171 |
+
|
172 |
+
>>> # Accessing the model configuration
|
173 |
+
>>> configuration = model.config
|
174 |
+
>>> config_text_encoder = model.config.text_encoder
|
175 |
+
>>> config_audio_encoder = model.config.audio_encoder
|
176 |
+
>>> config_decoder = model.config.decoder
|
177 |
+
|
178 |
+
>>> # Saving the model, including its configuration
|
179 |
+
>>> model.save_pretrained("musicgen-model")
|
180 |
+
|
181 |
+
>>> # loading model and config from pretrained folder
|
182 |
+
>>> musicgen_config = MusicgenConfig.from_pretrained("musicgen-model")
|
183 |
+
>>> model = MusicgenForConditionalGeneration.from_pretrained("musicgen-model", config=musicgen_config)
|
184 |
+
```"""
|
185 |
+
|
186 |
+
model_type = "musicgen"
|
187 |
+
is_composition = True
|
188 |
+
|
189 |
+
def __init__(self, **kwargs):
|
190 |
+
super().__init__(**kwargs)
|
191 |
+
if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs:
|
192 |
+
raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config")
|
193 |
+
|
194 |
+
text_encoder_config = kwargs.pop("text_encoder")
|
195 |
+
text_encoder_model_type = text_encoder_config.pop("model_type")
|
196 |
+
|
197 |
+
audio_encoder_config = kwargs.pop("audio_encoder")
|
198 |
+
audio_encoder_model_type = audio_encoder_config.pop("model_type")
|
199 |
+
|
200 |
+
decoder_config = kwargs.pop("decoder")
|
201 |
+
|
202 |
+
self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config)
|
203 |
+
self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
|
204 |
+
self.decoder = MusicgenDecoderConfig(**decoder_config)
|
205 |
+
self.is_encoder_decoder = True
|
206 |
+
|
207 |
+
@classmethod
|
208 |
+
def from_sub_models_config(
|
209 |
+
cls,
|
210 |
+
text_encoder_config: PretrainedConfig,
|
211 |
+
audio_encoder_config: PretrainedConfig,
|
212 |
+
decoder_config: MusicgenDecoderConfig,
|
213 |
+
**kwargs,
|
214 |
+
):
|
215 |
+
r"""
|
216 |
+
Instantiate a [`MusicgenConfig`] (or a derived class) from text encoder, audio encoder and decoder
|
217 |
+
configurations.
|
218 |
+
|
219 |
+
Returns:
|
220 |
+
[`MusicgenConfig`]: An instance of a configuration object
|
221 |
+
"""
|
222 |
+
|
223 |
+
return cls(
|
224 |
+
text_encoder=text_encoder_config.to_dict(),
|
225 |
+
audio_encoder=audio_encoder_config.to_dict(),
|
226 |
+
decoder=decoder_config.to_dict(),
|
227 |
+
**kwargs,
|
228 |
+
)
|
229 |
+
|
230 |
+
@property
|
231 |
+
# This is a property because you might want to change the codec model on the fly
|
232 |
+
def sampling_rate(self):
|
233 |
+
return self.audio_encoder.sampling_rate
|
llama/musicgen/modeling_attn_mask_utils.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import List, Optional, Tuple, Union
|
15 |
+
|
16 |
+
import torch
|
17 |
+
|
18 |
+
|
19 |
+
class AttentionMaskConverter:
|
20 |
+
"""
|
21 |
+
A utility attention mask class that allows one to:
|
22 |
+
- Create a causal 4d mask
|
23 |
+
- Create a causal 4d mask with slided window
|
24 |
+
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
|
25 |
+
key_value_length) that can be multiplied with attention scores
|
26 |
+
|
27 |
+
Parameters:
|
28 |
+
is_causal (`bool`):
|
29 |
+
Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
|
30 |
+
|
31 |
+
sliding_window (`int`, *optional*):
|
32 |
+
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
|
36 |
+
self.is_causal = is_causal
|
37 |
+
self.sliding_window = sliding_window
|
38 |
+
|
39 |
+
if self.sliding_window is not None and self.sliding_window <= 0:
|
40 |
+
raise ValueError(
|
41 |
+
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
|
42 |
+
)
|
43 |
+
|
44 |
+
def to_causal_4d(
|
45 |
+
self,
|
46 |
+
batch_size: int,
|
47 |
+
query_length: int,
|
48 |
+
key_value_length: int,
|
49 |
+
dtype: torch.dtype = torch.float32,
|
50 |
+
device: Union[torch.device, "str"] = "cpu",
|
51 |
+
) -> torch.Tensor:
|
52 |
+
"""
|
53 |
+
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
|
54 |
+
bias to upper right hand triangular matrix (causal mask).
|
55 |
+
"""
|
56 |
+
if not self.is_causal:
|
57 |
+
raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")
|
58 |
+
|
59 |
+
# If shape is not cached, create a new causal mask and cache it
|
60 |
+
input_shape = (batch_size, query_length)
|
61 |
+
past_key_values_length = key_value_length - query_length
|
62 |
+
|
63 |
+
# create causal mask
|
64 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
65 |
+
causal_4d_mask = None
|
66 |
+
if input_shape[-1] > 1 or self.sliding_window is not None:
|
67 |
+
causal_4d_mask = self._make_causal_mask(
|
68 |
+
input_shape,
|
69 |
+
dtype,
|
70 |
+
device=device,
|
71 |
+
past_key_values_length=past_key_values_length,
|
72 |
+
sliding_window=self.sliding_window,
|
73 |
+
)
|
74 |
+
|
75 |
+
return causal_4d_mask
|
76 |
+
|
77 |
+
def to_4d(
|
78 |
+
self,
|
79 |
+
attention_mask_2d: torch.Tensor,
|
80 |
+
query_length: int,
|
81 |
+
key_value_length: Optional[int] = None,
|
82 |
+
dtype: torch.dtype = torch.float32,
|
83 |
+
) -> torch.Tensor:
|
84 |
+
"""
|
85 |
+
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
|
86 |
+
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
|
87 |
+
causal, a causal mask will be added.
|
88 |
+
"""
|
89 |
+
input_shape = (attention_mask_2d.shape[0], query_length)
|
90 |
+
|
91 |
+
# create causal mask
|
92 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
93 |
+
causal_4d_mask = None
|
94 |
+
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
|
95 |
+
if key_value_length is None:
|
96 |
+
raise ValueError(
|
97 |
+
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
|
98 |
+
)
|
99 |
+
|
100 |
+
past_key_values_length = key_value_length - query_length
|
101 |
+
causal_4d_mask = self._make_causal_mask(
|
102 |
+
input_shape,
|
103 |
+
dtype,
|
104 |
+
device=attention_mask_2d.device,
|
105 |
+
past_key_values_length=past_key_values_length,
|
106 |
+
sliding_window=self.sliding_window,
|
107 |
+
)
|
108 |
+
elif self.sliding_window is not None:
|
109 |
+
raise NotImplementedError("Sliding window is currently only implemented for causal masking")
|
110 |
+
|
111 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
112 |
+
expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
|
113 |
+
attention_mask_2d.device
|
114 |
+
)
|
115 |
+
expanded_4d_mask = expanded_attn_mask if causal_4d_mask is None else expanded_attn_mask + causal_4d_mask
|
116 |
+
|
117 |
+
return expanded_4d_mask
|
118 |
+
|
119 |
+
@staticmethod
|
120 |
+
def _make_causal_mask(
|
121 |
+
input_ids_shape: torch.Size,
|
122 |
+
dtype: torch.dtype,
|
123 |
+
device: torch.device,
|
124 |
+
past_key_values_length: int = 0,
|
125 |
+
sliding_window: Optional[int] = None,
|
126 |
+
):
|
127 |
+
"""
|
128 |
+
Make causal mask used for bi-directional self-attention.
|
129 |
+
"""
|
130 |
+
bsz, tgt_len = input_ids_shape
|
131 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
132 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
133 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
134 |
+
|
135 |
+
mask = mask.to(dtype)
|
136 |
+
|
137 |
+
if past_key_values_length > 0:
|
138 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
139 |
+
|
140 |
+
# add lower triangular sliding window mask if necessary
|
141 |
+
if sliding_window is not None:
|
142 |
+
diagonal = past_key_values_length - sliding_window + 1
|
143 |
+
|
144 |
+
context_mask = 1 - torch.triu(torch.ones_like(mask, dtype=torch.int), diagonal=diagonal)
|
145 |
+
mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min)
|
146 |
+
|
147 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
148 |
+
|
149 |
+
@staticmethod
|
150 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
151 |
+
"""
|
152 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
153 |
+
"""
|
154 |
+
bsz, src_len = mask.size()
|
155 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
156 |
+
|
157 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
158 |
+
|
159 |
+
inverted_mask = 1.0 - expanded_mask
|
160 |
+
|
161 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
162 |
+
|
163 |
+
|
164 |
+
def _prepare_4d_causal_attention_mask(
|
165 |
+
attention_mask: Optional[torch.Tensor],
|
166 |
+
input_shape: Union[torch.Size, Tuple, List],
|
167 |
+
inputs_embeds: torch.Tensor,
|
168 |
+
past_key_values_length: int,
|
169 |
+
sliding_window: Optional[int] = None,
|
170 |
+
):
|
171 |
+
"""
|
172 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
173 |
+
`(batch_size, key_value_length)`
|
174 |
+
|
175 |
+
Args:
|
176 |
+
attention_mask (`torch.Tensor` or `None`):
|
177 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
178 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
179 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
180 |
+
inputs_embeds (`torch.Tensor`):
|
181 |
+
The embedded inputs as a torch Tensor.
|
182 |
+
past_key_values_length (`int`):
|
183 |
+
The length of the key value cache.
|
184 |
+
sliding_window (`int`, *optional*):
|
185 |
+
If the model uses windowed attention, a sliding window should be passed.
|
186 |
+
"""
|
187 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
188 |
+
|
189 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
190 |
+
|
191 |
+
# 4d mask is passed through the layers
|
192 |
+
if attention_mask is not None:
|
193 |
+
attention_mask = attn_mask_converter.to_4d(
|
194 |
+
attention_mask, input_shape[-1], key_value_length, dtype=inputs_embeds.dtype
|
195 |
+
)
|
196 |
+
else:
|
197 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
198 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
199 |
+
)
|
200 |
+
|
201 |
+
return attention_mask
|
202 |
+
|
203 |
+
|
204 |
+
def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
205 |
+
"""
|
206 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
207 |
+
`(batch_size, key_value_length)`
|
208 |
+
|
209 |
+
Args:
|
210 |
+
mask (`torch.Tensor` or `None`):
|
211 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
212 |
+
dtype (`torch.dtype`):
|
213 |
+
The torch dtype the created mask shall have.
|
214 |
+
tgt_len (`int`):
|
215 |
+
The target length or query length the created mask shall have.
|
216 |
+
"""
|
217 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
218 |
+
|
219 |
+
|
220 |
+
def _create_4d_causal_attention_mask(
|
221 |
+
input_shape: Union[torch.Size, Tuple, List],
|
222 |
+
dtype: torch.dtype,
|
223 |
+
device: torch.device,
|
224 |
+
past_key_values_length: int = 0,
|
225 |
+
sliding_window: Optional[int] = None,
|
226 |
+
):
|
227 |
+
"""
|
228 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
|
229 |
+
|
230 |
+
Args:
|
231 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
232 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
233 |
+
dtype (`torch.dtype`):
|
234 |
+
The torch dtype the created mask shall have.
|
235 |
+
device (`int`):
|
236 |
+
The torch device the created mask shall have.
|
237 |
+
sliding_window (`int`, *optional*):
|
238 |
+
If the model uses windowed attention, a sliding window should be passed.
|
239 |
+
"""
|
240 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
241 |
+
|
242 |
+
key_value_length = past_key_values_length + input_shape[-1]
|
243 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
244 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
|
245 |
+
)
|
246 |
+
|
247 |
+
return attention_mask
|
llama/musicgen/musicgen.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llama/projector.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
class ProjectionLayer(nn.Module):
|
5 |
+
"""Layers used in mapping text embeddings to visual outputs."""
|
6 |
+
|
7 |
+
def __init__(self, in_dim: int, out_dim: int, num_input_tokens: int = 1, num_output_tokens: int = 1):
|
8 |
+
super().__init__()
|
9 |
+
|
10 |
+
self.num_input_tokens = num_input_tokens
|
11 |
+
self.num_output_tokens = num_output_tokens
|
12 |
+
self.out_dim = out_dim
|
13 |
+
|
14 |
+
hidden_dim = 512
|
15 |
+
self.fc = nn.Linear(in_dim, hidden_dim)
|
16 |
+
self.tfm = nn.Transformer(batch_first=True, norm_first=False,
|
17 |
+
d_model=hidden_dim, num_encoder_layers=4, num_decoder_layers=4,
|
18 |
+
dim_feedforward=hidden_dim * 4, dropout=0.0, nhead=4)
|
19 |
+
self.model = nn.Linear(hidden_dim, out_dim)
|
20 |
+
self.query_embs = nn.Parameter(torch.randn(1, num_output_tokens, hidden_dim))
|
21 |
+
|
22 |
+
def forward(self, x: torch.Tensor, input_embs: torch.Tensor) -> torch.Tensor:
|
23 |
+
outputs = None
|
24 |
+
x = x + input_embs
|
25 |
+
x = self.fc(x)
|
26 |
+
x = self.tfm(x, self.query_embs.repeat(x.shape[0], 1, 1))
|
27 |
+
outputs = self.model(x)
|
28 |
+
|
29 |
+
assert outputs.shape[1] == 1 or (
|
30 |
+
outputs.shape[1] * outputs.shape[2] == self.num_output_tokens * self.out_dim), (
|
31 |
+
outputs.shape, self.num_output_tokens)
|
32 |
+
return outputs # (N, T_I_V_A.txt, D)
|
llama/tokenizer.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
3 |
+
|
4 |
+
from sentencepiece import SentencePieceProcessor
|
5 |
+
import sentencepiece.sentencepiece_model_pb2 as model
|
6 |
+
from logging import getLogger
|
7 |
+
from typing import List
|
8 |
+
import os
|
9 |
+
|
10 |
+
|
11 |
+
logger = getLogger()
|
12 |
+
|
13 |
+
|
14 |
+
class Tokenizer:
|
15 |
+
def __init__(self, model_path: str, num_aud_tokens: int):
|
16 |
+
# reload tokenizer
|
17 |
+
assert os.path.isfile(model_path), model_path
|
18 |
+
m = model.ModelProto()
|
19 |
+
m.ParseFromString(open(model_path, "rb").read())
|
20 |
+
special_tokens = [f'[AUD{i}]' for i in range(num_aud_tokens)]
|
21 |
+
for token in special_tokens:
|
22 |
+
new_token = model.ModelProto().SentencePiece()
|
23 |
+
new_token.piece = token
|
24 |
+
new_token.score = 0
|
25 |
+
if new_token in m.pieces:
|
26 |
+
m.pieces.remove(new_token)
|
27 |
+
m.pieces.append(new_token)
|
28 |
+
with open(model_path, 'wb') as f:
|
29 |
+
f.write(m.SerializeToString())
|
30 |
+
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
31 |
+
logger.info(f"Reloaded SentencePiece model from {model_path}")
|
32 |
+
|
33 |
+
# BOS / EOS token IDs
|
34 |
+
self.n_words: int = self.sp_model.vocab_size()
|
35 |
+
self.bos_id: int = self.sp_model.bos_id()
|
36 |
+
self.eos_id: int = self.sp_model.eos_id()
|
37 |
+
self.pad_id: int = self.sp_model.pad_id()
|
38 |
+
logger.info(
|
39 |
+
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
|
40 |
+
)
|
41 |
+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
46 |
+
assert type(s) is str
|
47 |
+
t = self.sp_model.encode_as_ids(s)
|
48 |
+
if bos:
|
49 |
+
t = [self.bos_id] + t
|
50 |
+
if eos:
|
51 |
+
t = t + [self.eos_id]
|
52 |
+
return t
|
53 |
+
|
54 |
+
def decode(self, t: List[int]) -> str:
|
55 |
+
return self.sp_model.decode(t)
|
llama/utils.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def sample_top_p(probs, p):
|
5 |
+
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
6 |
+
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
7 |
+
mask = probs_sum - probs_sort > p
|
8 |
+
probs_sort[mask] = 0.0
|
9 |
+
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
10 |
+
next_token = torch.multinomial(probs_sort, num_samples=1)
|
11 |
+
next_token = torch.gather(probs_idx, -1, next_token)
|
12 |
+
return next_token
|
13 |
+
|
14 |
+
|
15 |
+
def format_prompt(instruction):
|
16 |
+
|
17 |
+
PROMPT_DICT = {
|
18 |
+
"prompt_input": (
|
19 |
+
"Below is an instruction that describes a task. "
|
20 |
+
"Write a response that appropriately completes the request.\n\n"
|
21 |
+
"### Instruction:\n{instruction}\n\n### Response:"
|
22 |
+
)
|
23 |
+
}
|
24 |
+
return PROMPT_DICT["prompt_input"].format_map({'instruction': instruction})
|
25 |
+
|