File size: 4,816 Bytes
7fde12b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from functools import lru_cache

import duckdb
import gradio as gr
import polars as pl
from datasets import load_dataset
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from model2vec import StaticModel

global df

# Load a model from the HuggingFace hub (in this case the potion-base-8M model)
model_name = "minishlab/potion-base-8M"
model = StaticModel.from_pretrained(model_name)


def get_iframe(hub_repo_id):
    if not hub_repo_id:
        raise ValueError("Hub repo id is required")
    url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
    iframe = f"""
    <iframe
  src="{url}"
  frameborder="0"
  width="100%"
  height="600px"
></iframe>
"""
    return iframe


def load_dataset_from_hub(hub_repo_id: str):
    gr.Info(message="Loading dataset...")
    ds = load_dataset(hub_repo_id)


def get_columns(hub_repo_id: str, split: str):
    ds = load_dataset(hub_repo_id)
    ds_split = ds[split]
    return gr.Dropdown(
        choices=ds_split.column_names,
        value=ds_split.column_names[0],
        label="Select a column",
        visible=True,
    )


def get_splits(hub_repo_id: str):
    ds = load_dataset(hub_repo_id)
    splits = list(ds.keys())
    return gr.Dropdown(
        choices=splits, value=splits[0], label="Select a split", visible=True
    )


@lru_cache
def vectorize_dataset(hub_repo_id: str, split: str, column: str):
    gr.Info("Vectorizing dataset...")
    ds = load_dataset(hub_repo_id)
    df = ds[split].to_polars()
    embeddings = model.encode(df[column].cast(str), max_length=512)
    return embeddings


def run_query(hub_repo_id: str, query: str, split: str, column: str):
    embeddings = vectorize_dataset(hub_repo_id, split, column)
    ds = load_dataset(hub_repo_id)
    df = ds[split].to_polars()
    df = df.with_columns(pl.Series(embeddings).alias("embeddings"))
    try:
        vector = model.encode(query)
        df_results = duckdb.sql(
            query=f"""
            SELECT *
            FROM df
            ORDER BY array_cosine_distance(embeddings, {vector.tolist()}::FLOAT[256])
            LIMIT 5
            """
        ).to_df()
        return gr.Dataframe(df_results, visible=True)
    except Exception as e:
        raise gr.Error(f"Error running query: {e}")


def hide_components():
    return [
        gr.Dropdown(visible=False),
        gr.Dropdown(visible=False),
        gr.Textbox(visible=False),
        gr.Button(visible=False),
        gr.Dataframe(visible=False),
    ]


def partial_hide_components():
    return [
        gr.Textbox(visible=False),
        gr.Button(visible=False),
        gr.Dataframe(visible=False),
    ]


def show_components():
    return [
        gr.Textbox(visible=True, label="Query"),
        gr.Button(visible=True, value="Search"),
    ]


with gr.Blocks() as demo:
    gr.HTML(
        """
        <h1>Vector Search any Hugging Face Dataset</h1>
        <p>
            This app allows you to vector search any Hugging Face dataset.
            You can search for the nearest neighbors of a query vector, or
            perform a similarity search on a dataframe.
        </p>
        """
    )
    with gr.Row():
        with gr.Column():
            search_in = HuggingfaceHubSearch(
                label="Search Huggingface Hub",
                placeholder="Search for models on Huggingface",
                search_type="dataset",
                sumbit_on_select=True,
            )
    with gr.Row():
        search_out = gr.HTML(label="Search Results")

    with gr.Row():
        split_dropdown = gr.Dropdown(label="Select a split", visible=False)
        column_dropdown = gr.Dropdown(label="Select a column", visible=False)
    with gr.Row():
        query_input = gr.Textbox(label="Query", visible=False)

    btn_run = gr.Button("Search", visible=False)

    results_output = gr.Dataframe(label="Results", visible=False)

    search_in.submit(get_iframe, inputs=search_in, outputs=search_out).then(
        fn=load_dataset_from_hub,
        inputs=search_in,
        show_progress=True,
    ).then(
        fn=hide_components,
        outputs=[split_dropdown, column_dropdown, query_input, btn_run, results_output],
    ).then(fn=get_splits, inputs=search_in, outputs=split_dropdown).then(
        fn=get_columns, inputs=[search_in, split_dropdown], outputs=column_dropdown
    )

    split_dropdown.change(
        fn=get_columns, inputs=[search_in, split_dropdown], outputs=column_dropdown
    )

    column_dropdown.change(
        fn=partial_hide_components,
        outputs=[query_input, btn_run, results_output],
    ).then(fn=show_components, outputs=[query_input, btn_run])

    btn_run.click(
        fn=run_query,
        inputs=[search_in, query_input, split_dropdown, column_dropdown],
        outputs=results_output,
    )

demo.launch()