import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline import gradio as gr # import spaces # from datasets import load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "distil-whisper/distil-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, torch_dtype=torch_dtype, device=device, ) # Function to process audio input and transcribe it # @spaces.GPU def transcribe(audio): # Load and preprocess the audio result = pipe(audio)["text"] return result # Gradio interface interface = gr.Interface( fn=transcribe, inputs=gr.Audio(sources="microphone", type="filepath"), outputs="text", title="Whisper Voice Transcription with Hugging Face" ) # Launch the app # interface.launch()