Spaces:
Runtime error
Runtime error
error-analysis app
Browse files- LICENSE +201 -0
- README.md +4 -8
- app.py +283 -0
- assets/data/amazon_polarity.test.parquet +3 -0
- assets/data/amazon_polarity_albert-base-v2-yelp-polarity.parquet +3 -0
- assets/data/amazon_polarity_albert-base-v2-yelp-polarity_commontokens.parquet +3 -0
- assets/data/amazon_polarity_albert-base-v2-yelp-polarity_error-slices.parquet +3 -0
- assets/data/amazon_polarity_distilbert-base-uncased-finetuned-sst-2-english.parquet +3 -0
- assets/data/amazon_polarity_distilbert-base-uncased-finetuned-sst-2-english_commontokens.parquet +3 -0
- assets/data/amazon_polarity_distilbert-base-uncased-finetuned-sst-2-english_error-slices.parquet +3 -0
- assets/data/amazon_test_emb.parquet +3 -0
- assets/data/yelp_polarity_albert-base-v2-yelp-polarity.parquet +3 -0
- assets/data/yelp_polarity_albert-base-v2-yelp-polarity_commontokens.parquet +3 -0
- assets/data/yelp_polarity_albert-base-v2-yelp-polarity_error-slices.parquet +3 -0
- assets/data/yelp_polarity_distilbert-base-uncased-finetuned-sst-2-english.parquet +3 -0
- assets/data/yelp_polarity_distilbert-base-uncased-finetuned-sst-2-english_commontokens.parquet +3 -0
- assets/data/yelp_polarity_distilbert-base-uncased-finetuned-sst-2-english_error-slices.parquet +3 -0
- error_analysis/utils/__init__.py +1 -0
- error_analysis/utils/__pycache__/__init__.cpython-39.pyc +0 -0
- error_analysis/utils/__pycache__/style_hacks.cpython-39.pyc +0 -0
- error_analysis/utils/style_hacks.py +86 -0
- requirements.txt +139 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,13 +1,9 @@
|
|
1 |
---
|
2 |
-
title: Error Analysis
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.9.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: apache-2.0
|
11 |
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
1 |
---
|
2 |
+
title: Interactive Error Analysis
|
3 |
+
emoji: 🐛
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: orange
|
6 |
sdk: streamlit
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
|
|
9 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## LIBRARIES ###
|
2 |
+
## Data
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
import json
|
7 |
+
from tqdm import tqdm
|
8 |
+
from math import floor
|
9 |
+
from datasets import load_dataset
|
10 |
+
from collections import defaultdict
|
11 |
+
from transformers import AutoTokenizer
|
12 |
+
pd.options.display.float_format = '${:,.2f}'.format
|
13 |
+
|
14 |
+
# Analysis
|
15 |
+
# from gensim.models.doc2vec import Doc2Vec
|
16 |
+
# from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
|
17 |
+
import nltk
|
18 |
+
from nltk.cluster import KMeansClusterer
|
19 |
+
import scipy.spatial.distance as sdist
|
20 |
+
from scipy.spatial import distance_matrix
|
21 |
+
# nltk.download('punkt') #make sure that punkt is downloaded
|
22 |
+
|
23 |
+
# App & Visualization
|
24 |
+
import streamlit as st
|
25 |
+
import altair as alt
|
26 |
+
import plotly.graph_objects as go
|
27 |
+
from streamlit_vega_lite import altair_component
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
# utils
|
32 |
+
from random import sample
|
33 |
+
from error_analysis import utils as ut
|
34 |
+
|
35 |
+
|
36 |
+
def down_samp(embedding):
|
37 |
+
"""Down sample a data frame for altiar visualization """
|
38 |
+
# total number of positive and negative sentiments in the class
|
39 |
+
#embedding = embedding.groupby('slice').apply(lambda x: x.sample(frac=0.3))
|
40 |
+
total_size = embedding.groupby(['slice','label'], as_index=False).count()
|
41 |
+
|
42 |
+
user_data = 0
|
43 |
+
# if 'Your Sentences' in str(total_size['slice']):
|
44 |
+
# tmp = embedding.groupby(['slice'], as_index=False).count()
|
45 |
+
# val = int(tmp[tmp['slice'] == "Your Sentences"]['source'])
|
46 |
+
# user_data = val
|
47 |
+
|
48 |
+
max_sample = total_size.groupby('slice').max()['content']
|
49 |
+
|
50 |
+
# # down sample to meeting altair's max values
|
51 |
+
# # but keep the proportional representation of groups
|
52 |
+
down_samp = 1/(sum(max_sample.astype(float))/(1000-user_data))
|
53 |
+
|
54 |
+
max_samp = max_sample.apply(lambda x: floor(x*down_samp)).astype(int).to_dict()
|
55 |
+
max_samp['Your Sentences'] = user_data
|
56 |
+
|
57 |
+
# # sample down for each group in the data frame
|
58 |
+
embedding = embedding.groupby('slice').apply(lambda x: x.sample(n=max_samp.get(x.name))).reset_index(drop=True)
|
59 |
+
|
60 |
+
# # order the embedding
|
61 |
+
return(embedding)
|
62 |
+
|
63 |
+
|
64 |
+
def data_comparison(df):
|
65 |
+
selection = alt.selection_multi(fields=['cluster:N','label:O'])
|
66 |
+
color = alt.condition(alt.datum.slice == 'high-loss', alt.Color('cluster:N', scale = alt.Scale(domain=df.cluster.unique().tolist())), alt.value("lightgray"))
|
67 |
+
opacity = alt.condition(selection, alt.value(0.7), alt.value(0.25))
|
68 |
+
|
69 |
+
# basic chart
|
70 |
+
scatter = alt.Chart(df).mark_point(size=100, filled=True).encode(
|
71 |
+
x=alt.X('x:Q', axis=None),
|
72 |
+
y=alt.Y('y:Q', axis=None),
|
73 |
+
color=color,
|
74 |
+
shape=alt.Shape('label:O', scale=alt.Scale(range=['circle', 'diamond'])),
|
75 |
+
tooltip=['cluster:N','slice:N','content:N','label:O','pred:O'],
|
76 |
+
opacity=opacity
|
77 |
+
).properties(
|
78 |
+
width=1000,
|
79 |
+
height=800
|
80 |
+
).interactive()
|
81 |
+
|
82 |
+
legend = alt.Chart(df).mark_point(size=100, filled=True).encode(
|
83 |
+
x=alt.X("label:O"),
|
84 |
+
y=alt.Y('cluster:N', axis=alt.Axis(orient='right'), title=""),
|
85 |
+
shape=alt.Shape('label:O', scale=alt.Scale(
|
86 |
+
range=['circle', 'diamond']), legend=None),
|
87 |
+
color=color,
|
88 |
+
).add_selection(
|
89 |
+
selection
|
90 |
+
)
|
91 |
+
layered = scatter | legend
|
92 |
+
layered = layered.configure_axis(
|
93 |
+
grid=False
|
94 |
+
).configure_view(
|
95 |
+
strokeOpacity=0
|
96 |
+
)
|
97 |
+
return layered
|
98 |
+
|
99 |
+
def quant_panel(embedding_df):
|
100 |
+
""" Quantitative Panel Layout"""
|
101 |
+
all_metrics = {}
|
102 |
+
st.warning("**Error slice visualization**")
|
103 |
+
with st.expander("How to read this chart:"):
|
104 |
+
st.markdown("* Each **point** is an input example.")
|
105 |
+
st.markdown("* Gray points have low-loss and the colored have high-loss. High-loss instances are clustered using **kmeans** and each color represents a cluster.")
|
106 |
+
st.markdown("* The **shape** of each point reflects the label category -- positive (diamond) or negative sentiment (circle).")
|
107 |
+
st.altair_chart(data_comparison(down_samp(embedding_df)), use_container_width=True)
|
108 |
+
|
109 |
+
|
110 |
+
def frequent_tokens(data, tokenizer, loss_quantile=0.95, top_k=200, smoothing=0.005):
|
111 |
+
unique_tokens = []
|
112 |
+
tokens = []
|
113 |
+
for row in tqdm(data['content']):
|
114 |
+
tokenized = tokenizer(row,padding=True, return_tensors='pt')
|
115 |
+
tokens.append(tokenized['input_ids'].flatten())
|
116 |
+
unique_tokens.append(torch.unique(tokenized['input_ids']))
|
117 |
+
losses = data['loss'].astype(float)
|
118 |
+
high_loss = losses.quantile(loss_quantile)
|
119 |
+
loss_weights = (losses > high_loss)
|
120 |
+
loss_weights = loss_weights / loss_weights.sum()
|
121 |
+
token_frequencies = defaultdict(float)
|
122 |
+
token_frequencies_error = defaultdict(float)
|
123 |
+
|
124 |
+
weights_uniform = np.full_like(loss_weights, 1 / len(loss_weights))
|
125 |
+
|
126 |
+
num_examples = len(data)
|
127 |
+
for i in tqdm(range(num_examples)):
|
128 |
+
for token in unique_tokens[i]:
|
129 |
+
token_frequencies[token.item()] += weights_uniform[i]
|
130 |
+
token_frequencies_error[token.item()] += loss_weights[i]
|
131 |
+
|
132 |
+
token_lrs = {k: (smoothing+token_frequencies_error[k]) / (smoothing+token_frequencies[k]) for k in token_frequencies}
|
133 |
+
tokens_sorted = list(map(lambda x: x[0], sorted(token_lrs.items(), key=lambda x: x[1])[::-1]))
|
134 |
+
|
135 |
+
top_tokens = []
|
136 |
+
for i, (token) in enumerate(tokens_sorted[:top_k]):
|
137 |
+
top_tokens.append(['%10s' % (tokenizer.decode(token)), '%.4f' % (token_frequencies[token]), '%.4f' % (
|
138 |
+
token_frequencies_error[token]), '%4.2f' % (token_lrs[token])])
|
139 |
+
return pd.DataFrame(top_tokens, columns=['Token', 'Freq', 'Freq error slice', 'lrs'])
|
140 |
+
|
141 |
+
|
142 |
+
@st.cache(ttl=600)
|
143 |
+
def get_data(inference, emb):
|
144 |
+
preds = inference.outputs.numpy()
|
145 |
+
losses = inference.losses.numpy()
|
146 |
+
embeddings = pd.DataFrame(emb, columns=['x', 'y'])
|
147 |
+
num_examples = len(losses)
|
148 |
+
# dataset_labels = [dataset[i]['label'] for i in range(num_examples)]
|
149 |
+
return pd.concat([pd.DataFrame(np.transpose(np.vstack([dataset[:num_examples]['content'],
|
150 |
+
dataset[:num_examples]['label'], preds, losses])), columns=['content', 'label', 'pred', 'loss']), embeddings], axis=1)
|
151 |
+
|
152 |
+
def clustering(data,num_clusters):
|
153 |
+
X = np.array(data['embedding'].tolist())
|
154 |
+
kclusterer = KMeansClusterer(
|
155 |
+
num_clusters, distance=nltk.cluster.util.cosine_distance,
|
156 |
+
repeats=25,avoid_empty_clusters=True)
|
157 |
+
assigned_clusters = kclusterer.cluster(X, assign_clusters=True)
|
158 |
+
data['cluster'] = pd.Series(assigned_clusters, index=data.index).astype('int')
|
159 |
+
data['centroid'] = data['cluster'].apply(lambda x: kclusterer.means()[x])
|
160 |
+
return data, assigned_clusters
|
161 |
+
|
162 |
+
def kmeans(df, num_clusters=3):
|
163 |
+
data_hl = df.loc[df['slice'] == 'high-loss']
|
164 |
+
data_kmeans,clusters = clustering(data_hl,num_clusters)
|
165 |
+
merged = pd.merge(df, data_kmeans, left_index=True, right_index=True, how='outer', suffixes=('', '_y'))
|
166 |
+
merged.drop(merged.filter(regex='_y$').columns.tolist(),axis=1,inplace=True)
|
167 |
+
merged['cluster'] = merged['cluster'].fillna(num_clusters).astype('int')
|
168 |
+
return merged
|
169 |
+
|
170 |
+
def distance_from_centroid(row):
|
171 |
+
return sdist.norm(row['embedding'] - row['centroid'].tolist())
|
172 |
+
|
173 |
+
@st.cache(ttl=600)
|
174 |
+
def topic_distribution(weights, smoothing=0.01):
|
175 |
+
topic_frequencies = defaultdict(float)
|
176 |
+
topic_frequencies_spotlight = defaultdict(float)
|
177 |
+
weights_uniform = np.full_like(weights, 1 / len(weights))
|
178 |
+
num_examples = len(weights)
|
179 |
+
for i in range(num_examples):
|
180 |
+
example = dataset[i]
|
181 |
+
category = example['title']
|
182 |
+
topic_frequencies[category] += weights_uniform[i]
|
183 |
+
topic_frequencies_spotlight[category] += weights[i]
|
184 |
+
|
185 |
+
topic_ratios = {c: (smoothing + topic_frequencies_spotlight[c]) / (
|
186 |
+
smoothing + topic_frequencies[c]) for c in topic_frequencies}
|
187 |
+
|
188 |
+
categories_sorted = map(lambda x: x[0], sorted(
|
189 |
+
topic_ratios.items(), key=lambda x: x[1], reverse=True))
|
190 |
+
|
191 |
+
topic_distr = []
|
192 |
+
for category in categories_sorted:
|
193 |
+
topic_distr.append(['%.3f' % topic_frequencies[category], '%.3f' %
|
194 |
+
topic_frequencies_spotlight[category], '%.2f' % topic_ratios[category], '%s' % category])
|
195 |
+
|
196 |
+
return pd.DataFrame(topic_distr, columns=['Overall frequency', 'Error frequency', 'Ratio', 'Category'])
|
197 |
+
# for category in categories_sorted:
|
198 |
+
# return(topic_frequencies[category], topic_frequencies_spotlight[category], topic_ratios[category], category)
|
199 |
+
|
200 |
+
def populate_session(dataset,model):
|
201 |
+
data_df = read_file_to_df('./assets/data/'+dataset+ '_'+ model+'.parquet')
|
202 |
+
if model == 'albert-base-v2-yelp-polarity':
|
203 |
+
tokenizer = AutoTokenizer.from_pretrained('textattack/'+model)
|
204 |
+
else:
|
205 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
206 |
+
if "user_data" not in st.session_state:
|
207 |
+
st.session_state["user_data"] = data_df
|
208 |
+
if "selected_slice" not in st.session_state:
|
209 |
+
st.session_state["selected_slice"] = None
|
210 |
+
|
211 |
+
@st.cache(allow_output_mutation=True)
|
212 |
+
def read_file_to_df(file):
|
213 |
+
return pd.read_parquet(file)
|
214 |
+
|
215 |
+
if __name__ == "__main__":
|
216 |
+
### STREAMLIT APP CONGFIG ###
|
217 |
+
st.set_page_config(layout="wide", page_title="Interactive Error Analysis")
|
218 |
+
|
219 |
+
ut.init_style()
|
220 |
+
|
221 |
+
lcol, rcol = st.columns([2, 2])
|
222 |
+
# ******* loading the mode and the data
|
223 |
+
#st.sidebar.mardown("<h4>Interactive Error Analysis</h4>", unsafe_allow_html=True)
|
224 |
+
|
225 |
+
dataset = st.sidebar.selectbox(
|
226 |
+
"Dataset",
|
227 |
+
["amazon_polarity", "yelp_polarity"],
|
228 |
+
index = 1
|
229 |
+
)
|
230 |
+
|
231 |
+
model = st.sidebar.selectbox(
|
232 |
+
"Model",
|
233 |
+
["distilbert-base-uncased-finetuned-sst-2-english",
|
234 |
+
"albert-base-v2-yelp-polarity"],
|
235 |
+
)
|
236 |
+
|
237 |
+
### LOAD DATA AND SESSION VARIABLES ###
|
238 |
+
##uncomment the next next line to run dynamically and not from file
|
239 |
+
#populate_session(dataset, model)
|
240 |
+
data_df = read_file_to_df('./assets/data/'+dataset+ '_'+ model+'.parquet')
|
241 |
+
loss_quantile = st.sidebar.slider(
|
242 |
+
"Loss Quantile", min_value=0.5, max_value=1.0,step=0.01,value=0.95
|
243 |
+
)
|
244 |
+
data_df['loss'] = data_df['loss'].astype(float)
|
245 |
+
losses = data_df['loss']
|
246 |
+
high_loss = losses.quantile(loss_quantile)
|
247 |
+
data_df['slice'] = 'high-loss'
|
248 |
+
data_df['slice'] = data_df['slice'].where(data_df['loss'] > high_loss, 'low-loss')
|
249 |
+
|
250 |
+
with rcol:
|
251 |
+
with st.spinner(text='loading...'):
|
252 |
+
st.markdown('<h3>Word Distribution in Error Slice</h3>', unsafe_allow_html=True)
|
253 |
+
#uncomment the next two lines to run dynamically and not from file
|
254 |
+
#commontokens = frequent_tokens(data_df, tokenizer, loss_quantile=loss_quantile)
|
255 |
+
commontokens = read_file_to_df('./assets/data/'+dataset+ '_'+ model+'_commontokens.parquet')
|
256 |
+
with st.expander("How to read the table:"):
|
257 |
+
st.markdown("* The table displays the most frequent tokens in error slices, relative to their frequencies in the val set.")
|
258 |
+
st.write(commontokens)
|
259 |
+
|
260 |
+
run_kmeans = st.sidebar.radio("Cluster error slice?", ('True', 'False'), index=0)
|
261 |
+
|
262 |
+
num_clusters = st.sidebar.slider("# clusters", min_value=1, max_value=20, step=1, value=3)
|
263 |
+
|
264 |
+
if run_kmeans == 'True':
|
265 |
+
with st.spinner(text='running kmeans...'):
|
266 |
+
merged = kmeans(data_df,num_clusters=num_clusters)
|
267 |
+
with lcol:
|
268 |
+
st.markdown('<h3>Error Slices</h3>',unsafe_allow_html=True)
|
269 |
+
with st.expander("How to read the table:"):
|
270 |
+
st.markdown("* *Error slice* refers to the subset of evaluation dataset the model performs poorly on.")
|
271 |
+
st.markdown("* The table displays model error slices on the evaluation dataset, sorted by loss.")
|
272 |
+
st.markdown("* Each row is an input example that includes the label, model pred, loss, and error cluster.")
|
273 |
+
with st.spinner(text='loading error slice...'):
|
274 |
+
dataframe=read_file_to_df('./assets/data/'+dataset+ '_'+ model+'_error-slices.parquet')
|
275 |
+
#uncomment the next next line to run dynamically and not from file
|
276 |
+
# dataframe = merged[['content', 'label', 'pred', 'loss', 'cluster']].sort_values(
|
277 |
+
# by=['loss'], ascending=False)
|
278 |
+
# table_html = dataframe.to_html(
|
279 |
+
# columns=['content', 'label', 'pred', 'loss', 'cluster'], max_rows=50)
|
280 |
+
# table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
|
281 |
+
st.write(dataframe,width=900, height=300)
|
282 |
+
with st.spinner(text='loading visualization...'):
|
283 |
+
quant_panel(merged)
|
assets/data/amazon_polarity.test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e57ae9ce39c5251e432b4a6dce31915782276b98a7751281eb66b8cff3b46b6
|
3 |
+
size 5864011
|
assets/data/amazon_polarity_albert-base-v2-yelp-polarity.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bce0297bedc66865c01644421ea934008d74807befb7b0bd94aa92729bd02a59
|
3 |
+
size 56644779
|
assets/data/amazon_polarity_albert-base-v2-yelp-polarity_commontokens.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de69efcda9ab5c3aa8dc616c016cace08096cbc21478dd894f9cccf0b843ede4
|
3 |
+
size 6067
|
assets/data/amazon_polarity_albert-base-v2-yelp-polarity_error-slices.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62ce63230551fe9870919f051dfeead6892bb917ba63c7edfcc0e819867ed2cd
|
3 |
+
size 5954640
|
assets/data/amazon_polarity_distilbert-base-uncased-finetuned-sst-2-english.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a193c26851f48b7b76a35986ced0dc1fddafd26b92f1aaf9a4e69fd83fd2f2e4
|
3 |
+
size 56643545
|
assets/data/amazon_polarity_distilbert-base-uncased-finetuned-sst-2-english_commontokens.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de69efcda9ab5c3aa8dc616c016cace08096cbc21478dd894f9cccf0b843ede4
|
3 |
+
size 6067
|
assets/data/amazon_polarity_distilbert-base-uncased-finetuned-sst-2-english_error-slices.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6626d19361cfe06ba70be19004d18eb23a1764926d15ed5b103ec36fc2d8eaea
|
3 |
+
size 5954642
|
assets/data/amazon_test_emb.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaf8bcf2691858dc39d0f83872f425a839b05de4b916c111cba6e9c69747e467
|
3 |
+
size 50449725
|
assets/data/yelp_polarity_albert-base-v2-yelp-polarity.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a56147880841c6f78a868fb58f6e97661547009e570c2887ef7c12ffd54474e
|
3 |
+
size 103294569
|
assets/data/yelp_polarity_albert-base-v2-yelp-polarity_commontokens.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e5241d13a23656bbab7851d4a8ad1df70d8675e9db62f3e9ade719b41c524db
|
3 |
+
size 6681
|
assets/data/yelp_polarity_albert-base-v2-yelp-polarity_error-slices.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7140867800b4e9ac5f34b5c181ec69c261638582ef55c142aaf23320e9e56743
|
3 |
+
size 9765767
|
assets/data/yelp_polarity_distilbert-base-uncased-finetuned-sst-2-english.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:165515be2837df9b02f782fe1e7bd3b31bb01c49960e73238f77541eee7589ad
|
3 |
+
size 61796202
|
assets/data/yelp_polarity_distilbert-base-uncased-finetuned-sst-2-english_commontokens.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c243229a8f55a1910fcab1823cd4810d51a59c6442244a47ee5ee621da069518
|
3 |
+
size 6509
|
assets/data/yelp_polarity_distilbert-base-uncased-finetuned-sst-2-english_error-slices.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ec890d0df88c0d7fdaba7ca9e50f715c50d173f99ae021fd4c49534d4ef12a9
|
3 |
+
size 9803781
|
error_analysis/utils/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .style_hacks import *
|
error_analysis/utils/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (204 Bytes). View file
|
|
error_analysis/utils/__pycache__/style_hacks.cpython-39.pyc
ADDED
Binary file (2.11 kB). View file
|
|
error_analysis/utils/style_hacks.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
placeholder for all streamlit style hacks
|
3 |
+
"""
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
|
7 |
+
def init_style():
|
8 |
+
return st.markdown(
|
9 |
+
"""
|
10 |
+
<style>
|
11 |
+
/* Side Bar */
|
12 |
+
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
|
13 |
+
width: 250px;
|
14 |
+
}
|
15 |
+
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
|
16 |
+
width: 250px;
|
17 |
+
}
|
18 |
+
[data-testid="stSidebar"]{
|
19 |
+
flex-basis: unset;
|
20 |
+
}
|
21 |
+
.css-1outpf7 {
|
22 |
+
background-color:rgb(254 244 219);
|
23 |
+
width:10rem;
|
24 |
+
padding:10px 10px 10px 10px;
|
25 |
+
}
|
26 |
+
|
27 |
+
/* Main Panel*/
|
28 |
+
.css-18e3th9 {
|
29 |
+
padding:10px 10px 10px -200px;
|
30 |
+
}
|
31 |
+
.css-1ubw6au:last-child{
|
32 |
+
background-color:lightblue;
|
33 |
+
}
|
34 |
+
|
35 |
+
/* Model Panels : element-container */
|
36 |
+
.element-container{
|
37 |
+
border-style:none
|
38 |
+
}
|
39 |
+
|
40 |
+
/* Radio Button Direction*/
|
41 |
+
div.row-widget.stRadio > div{flex-direction:row;}
|
42 |
+
|
43 |
+
/* Expander Boz*/
|
44 |
+
.streamlit-expander {
|
45 |
+
border-width: 0px;
|
46 |
+
border-bottom: 1px solid #A29C9B;
|
47 |
+
border-radius: 10px;
|
48 |
+
}
|
49 |
+
|
50 |
+
.streamlit-expanderHeader {
|
51 |
+
font-style: italic;
|
52 |
+
font-weight :600;
|
53 |
+
font-size:16px;
|
54 |
+
padding-top:0px;
|
55 |
+
padding-left: 0px;
|
56 |
+
color:#A29C9B
|
57 |
+
|
58 |
+
/* Section Headers */
|
59 |
+
.sectionHeader {
|
60 |
+
font-size:10px;
|
61 |
+
}
|
62 |
+
[data-testid="stMarkdownContainer]{
|
63 |
+
font-family: sans-serif;
|
64 |
+
font-weight: 500;
|
65 |
+
font-size: 1.5 rem !important;
|
66 |
+
color: rgb(250, 250, 250);
|
67 |
+
padding: 1.25rem 0px 1rem;
|
68 |
+
margin: 0px;
|
69 |
+
line-height: 1.4;
|
70 |
+
}
|
71 |
+
|
72 |
+
/* text input*/
|
73 |
+
.st-e5 {
|
74 |
+
background-color:lightblue;
|
75 |
+
}
|
76 |
+
/*line special*/
|
77 |
+
.line-one{
|
78 |
+
border-width: 0px;
|
79 |
+
border-bottom: 1px solid #A29C9B;
|
80 |
+
border-radius: 50px;
|
81 |
+
}
|
82 |
+
|
83 |
+
</style>
|
84 |
+
""",
|
85 |
+
unsafe_allow_html=True,
|
86 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file may be used to create an environment using:
|
2 |
+
# $ conda create --name <env> --file <this file>
|
3 |
+
# platform: osx-arm64
|
4 |
+
absl-py==1.0.0; python_version >= '3.6'
|
5 |
+
aiohttp==3.8.0
|
6 |
+
aiosignal==1.2.0; python_version >= '3.6'
|
7 |
+
altair==4.1.0
|
8 |
+
antlr4-python3-runtime==4.8
|
9 |
+
appnope==0.1.2; sys_platform == 'darwin' and platform_system == 'Darwin'
|
10 |
+
argon2-cffi==21.1.0; python_version >= '3.5'
|
11 |
+
astor==0.8.1; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
12 |
+
async-timeout==4.0.1; python_version >= '3.6'
|
13 |
+
attrs==21.2.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
|
14 |
+
backcall==0.2.0
|
15 |
+
backports.zoneinfo==0.2.1; python_version >= '3.6' and python_version < '3.9'
|
16 |
+
base58==2.1.1; python_version >= '3.5'
|
17 |
+
bleach==4.1.0; python_version >= '3.6'
|
18 |
+
blinker==1.4
|
19 |
+
cachetools==4.2.4; python_version ~= '3.5'
|
20 |
+
certifi==2021.10.8
|
21 |
+
cffi==1.15.0
|
22 |
+
charset-normalizer==2.0.7; python_version >= '3'
|
23 |
+
click==7.1.2; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
|
24 |
+
cython==0.29.24; python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
25 |
+
cytoolz==0.11.2; python_version >= '3.5'
|
26 |
+
dataclasses==0.6
|
27 |
+
datasets==1.15.1
|
28 |
+
debugpy==1.5.1; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
|
29 |
+
decorator==5.1.0; python_version >= '3.5'
|
30 |
+
defusedxml==0.7.1; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
|
31 |
+
dill==0.3.4; python_version >= '2.7' and python_version != '3.0'
|
32 |
+
entrypoints==0.3; python_version >= '2.7'
|
33 |
+
fastbpe==0.1.0
|
34 |
+
filelock==3.3.2; python_version >= '3.6'
|
35 |
+
frozenlist==1.2.0; python_version >= '3.6'
|
36 |
+
fsspec[http]==2021.11.0; python_version >= '3.6'
|
37 |
+
future==0.18.2; python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
38 |
+
fuzzywuzzy==0.18.0
|
39 |
+
gitdb==4.0.9; python_version >= '3.6'
|
40 |
+
gitpython==3.1.24; python_version >= '3.7'
|
41 |
+
google-auth-oauthlib==0.4.6; python_version >= '3.6'
|
42 |
+
google-auth==2.3.3; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4, 3.5'
|
43 |
+
grpcio==1.41.1
|
44 |
+
idna==3.3; python_version >= '3'
|
45 |
+
importlib-resources==5.4.0; python_version < '3.9'
|
46 |
+
kaleido==0.2.1
|
47 |
+
markdown==3.3.4; python_version >= '3.6'
|
48 |
+
markupsafe==2.0.1; python_version >= '3.6'
|
49 |
+
matplotlib-inline==0.1.3; python_version >= '3.5'
|
50 |
+
meerkat-ml==0.1.2; python_version >= '3.7'
|
51 |
+
mistune==0.8.4
|
52 |
+
multidict==5.2.0; python_version >= '3.6'
|
53 |
+
multiprocess==0.70.12.2
|
54 |
+
nbclient==0.5.8; python_full_version >= '3.6.1'
|
55 |
+
nbconvert==6.3.0; python_version >= '3.7'
|
56 |
+
nbformat==5.1.3; python_version >= '3.5'
|
57 |
+
nest-asyncio==1.5.1; python_version >= '3.5'
|
58 |
+
nltk==3.6.5
|
59 |
+
notebook==6.4.5; python_version >= '3.6'
|
60 |
+
numpy==1.21.4
|
61 |
+
oauthlib==3.1.1; python_version >= '3.6'
|
62 |
+
omegaconf==2.1.1; python_version >= '3.6'
|
63 |
+
packaging==21.2; python_version >= '3.6'
|
64 |
+
pandas==1.3.4
|
65 |
+
pandocfilters==1.5.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
66 |
+
parso==0.8.2; python_version >= '3.6'
|
67 |
+
pexpect==4.8.0; sys_platform != 'win32'
|
68 |
+
pickleshare==0.7.5
|
69 |
+
pillow==8.4.0; python_version >= '3.6'
|
70 |
+
plotly==5.3.1
|
71 |
+
progressbar==2.5
|
72 |
+
prometheus-client==0.12.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
73 |
+
prompt-toolkit==3.0.22; python_full_version >= '3.6.2'
|
74 |
+
protobuf==3.19.1; python_version >= '3.5'
|
75 |
+
ptyprocess==0.7.0; os_name != 'nt'
|
76 |
+
pyahocorasick==1.4.2
|
77 |
+
pyarrow==6.0.0; python_version >= '3.6'
|
78 |
+
pyasn1-modules==0.2.8
|
79 |
+
pyasn1==0.4.8
|
80 |
+
pycparser==2.21; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
81 |
+
pydeck==0.7.1; python_version >= '3.7'
|
82 |
+
pydeprecate==0.3.1; python_version >= '3.6'
|
83 |
+
pygments==2.10.0; python_version >= '3.5'
|
84 |
+
pympler==0.9
|
85 |
+
pyparsing==2.4.7; python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
86 |
+
pyrsistent==0.18.0; python_version >= '3.6'
|
87 |
+
python-dateutil==2.8.2; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
88 |
+
python-levenshtein==0.12.2
|
89 |
+
pytorch-lightning==1.5.1; python_version >= '3.6'
|
90 |
+
pytz-deprecation-shim==0.1.0.post0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4, 3.5'
|
91 |
+
pytz==2021.3
|
92 |
+
pyyaml==6.0; python_version >= '3.6'
|
93 |
+
pyzmq==22.3.0; python_version >= '3.6'
|
94 |
+
regex==2021.11.10
|
95 |
+
requests-oauthlib==1.3.0
|
96 |
+
requests==2.26.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4, 3.5'
|
97 |
+
robustnessgym==0.1.3
|
98 |
+
rsa==4.7.2; python_version >= '3.6'
|
99 |
+
sacremoses==0.0.46
|
100 |
+
scikit-learn==1.0.1; python_version >= '3.7'
|
101 |
+
scipy==1.7.2; python_version < '3.11' and python_version >= '3.7'
|
102 |
+
semver==2.13.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
103 |
+
send2trash==1.8.0
|
104 |
+
six==1.16.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
105 |
+
sklearn==0.0
|
106 |
+
smart-open==5.2.1; python_version >= '3.6' and python_version < '4'
|
107 |
+
smmap==5.0.0; python_version >= '3.6'
|
108 |
+
streamlit-vega-lite==0.1.0
|
109 |
+
streamlit==1.2.0
|
110 |
+
tenacity==8.0.1; python_version >= '3.6'
|
111 |
+
tensorboard-data-server==0.6.1; python_version >= '3.6'
|
112 |
+
tensorboard-plugin-wit==1.8.0
|
113 |
+
tensorboard==2.7.0; python_version >= '3.6'
|
114 |
+
terminado==0.12.1; python_version >= '3.6'
|
115 |
+
testpath==0.5.0; python_version >= '3.5'
|
116 |
+
threadpoolctl==3.0.0; python_version >= '3.6'
|
117 |
+
tokenizers==0.10.3
|
118 |
+
toml==0.10.2; python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
119 |
+
toolz==0.11.2; python_version >= '3.5'
|
120 |
+
torch==1.10.0; python_full_version >= '3.6.2'
|
121 |
+
torchmetrics==0.6.0; python_version >= '3.6'
|
122 |
+
tornado==6.1; python_version >= '3.5'
|
123 |
+
tqdm==4.62.3; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
124 |
+
traitlets==5.1.1; python_version >= '3.7'
|
125 |
+
transformers==4.12.3; python_version >= '3.6'
|
126 |
+
typing-extensions==3.10.0.2; python_version < '3.10'
|
127 |
+
tzdata==2021.5; python_version >= '3.6'
|
128 |
+
tzlocal==4.1; python_version >= '3.6'
|
129 |
+
ujson==4.2.0; python_version >= '3.6'
|
130 |
+
urllib3==1.26.7; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4' and python_version < '4'
|
131 |
+
validators==0.18.2; python_version >= '3.4'
|
132 |
+
wcwidth==0.2.5
|
133 |
+
webencodings==0.5.1
|
134 |
+
werkzeug==2.0.2; python_version >= '3.6'
|
135 |
+
wheel==0.37.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
|
136 |
+
widgetsnbextension==3.5.2
|
137 |
+
xxhash==2.0.2; python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
138 |
+
yarl==1.7.2; python_version >= '3.6'
|
139 |
+
zipp==3.6.0; python_version < '3.10'
|