Spaces:
Runtime error
Runtime error
wissamantoun
commited on
Commit
•
0558cbb
1
Parent(s):
854b7af
added Sentiment Analysis
Browse files- app.py +2 -0
- backend/sa.py +19 -0
- backend/sa_utils.py +510 -0
- backend/services.py +177 -0
- backend/utils.py +10 -0
- requirements.txt +3 -1
app.py
CHANGED
@@ -4,6 +4,7 @@ import streamlit as st
|
|
4 |
import backend.aragpt
|
5 |
import backend.home
|
6 |
import backend.processor
|
|
|
7 |
from backend.utils import get_current_ram_usage
|
8 |
|
9 |
st.set_page_config(
|
@@ -14,6 +15,7 @@ PAGES = {
|
|
14 |
"Home": backend.home,
|
15 |
"Arabic Text Preprocessor": backend.processor,
|
16 |
"Arabic Language Generation": backend.aragpt,
|
|
|
17 |
}
|
18 |
|
19 |
|
|
|
4 |
import backend.aragpt
|
5 |
import backend.home
|
6 |
import backend.processor
|
7 |
+
import backend.sa
|
8 |
from backend.utils import get_current_ram_usage
|
9 |
|
10 |
st.set_page_config(
|
|
|
15 |
"Home": backend.home,
|
16 |
"Arabic Text Preprocessor": backend.processor,
|
17 |
"Arabic Language Generation": backend.aragpt,
|
18 |
+
"Arabic Sentiment Analysis": backend.sa,
|
19 |
}
|
20 |
|
21 |
|
backend/sa.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from .services import SentimentAnalyzer
|
3 |
+
from functools import lru_cache
|
4 |
+
|
5 |
+
# @st.cache(allow_output_mutation=False, hash_funcs={Tokenizer: str})
|
6 |
+
@lru_cache(maxsize=1)
|
7 |
+
def load_text_generator():
|
8 |
+
predictor = SentimentAnalyzer()
|
9 |
+
return predictor
|
10 |
+
|
11 |
+
|
12 |
+
predictor = load_text_generator()
|
13 |
+
|
14 |
+
|
15 |
+
def write():
|
16 |
+
input_text = st.text_input("Enter your text here:", key="Fuck you")
|
17 |
+
if st.button("Predict"):
|
18 |
+
with st.spinner("Predicting..."):
|
19 |
+
prediction, score, all_score = predictor.predict([input_text])
|
backend/sa_utils.py
ADDED
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from contextlib import contextmanager
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from fuzzysearch import find_near_matches
|
8 |
+
from pyarabic import araby
|
9 |
+
from torch import nn
|
10 |
+
from transformers import AutoTokenizer, BertModel, BertPreTrainedModel, pipeline
|
11 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
12 |
+
|
13 |
+
from .preprocess import ArabertPreprocessor, url_regexes, user_mention_regex
|
14 |
+
|
15 |
+
multiple_char_pattern = re.compile(r"(.)\1{2,}", re.DOTALL)
|
16 |
+
|
17 |
+
# ASAD-NEW_AraBERT_PREP-Balanced
|
18 |
+
class NewArabicPreprocessorBalanced(ArabertPreprocessor):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
model_name: str,
|
22 |
+
keep_emojis: bool = False,
|
23 |
+
remove_html_markup: bool = True,
|
24 |
+
replace_urls_emails_mentions: bool = True,
|
25 |
+
strip_tashkeel: bool = True,
|
26 |
+
strip_tatweel: bool = True,
|
27 |
+
insert_white_spaces: bool = True,
|
28 |
+
remove_non_digit_repetition: bool = True,
|
29 |
+
replace_slash_with_dash: bool = None,
|
30 |
+
map_hindi_numbers_to_arabic: bool = None,
|
31 |
+
apply_farasa_segmentation: bool = None,
|
32 |
+
):
|
33 |
+
if "UBC-NLP" in model_name or "CAMeL-Lab" in model_name:
|
34 |
+
keep_emojis = True
|
35 |
+
remove_non_digit_repetition = True
|
36 |
+
super().__init__(
|
37 |
+
model_name=model_name,
|
38 |
+
keep_emojis=keep_emojis,
|
39 |
+
remove_html_markup=remove_html_markup,
|
40 |
+
replace_urls_emails_mentions=replace_urls_emails_mentions,
|
41 |
+
strip_tashkeel=strip_tashkeel,
|
42 |
+
strip_tatweel=strip_tatweel,
|
43 |
+
insert_white_spaces=insert_white_spaces,
|
44 |
+
remove_non_digit_repetition=remove_non_digit_repetition,
|
45 |
+
replace_slash_with_dash=replace_slash_with_dash,
|
46 |
+
map_hindi_numbers_to_arabic=map_hindi_numbers_to_arabic,
|
47 |
+
apply_farasa_segmentation=apply_farasa_segmentation,
|
48 |
+
)
|
49 |
+
self.true_model_name = model_name
|
50 |
+
|
51 |
+
def preprocess(self, text):
|
52 |
+
if "UBC-NLP" in self.true_model_name:
|
53 |
+
return self.ubc_prep(text)
|
54 |
+
|
55 |
+
def ubc_prep(self, text):
|
56 |
+
text = re.sub("\s", " ", text)
|
57 |
+
text = text.replace("\\n", " ")
|
58 |
+
text = text.replace("\\r", " ")
|
59 |
+
text = araby.strip_tashkeel(text)
|
60 |
+
text = araby.strip_tatweel(text)
|
61 |
+
# replace all possible URLs
|
62 |
+
for reg in url_regexes:
|
63 |
+
text = re.sub(reg, " URL ", text)
|
64 |
+
text = re.sub("(URL\s*)+", " URL ", text)
|
65 |
+
# replace mentions with USER
|
66 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
67 |
+
text = re.sub("(USER\s*)+", " USER ", text)
|
68 |
+
# replace hashtags with HASHTAG
|
69 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
70 |
+
text = text.replace("#", " HASH ")
|
71 |
+
text = text.replace("_", " ")
|
72 |
+
text = " ".join(text.split())
|
73 |
+
# text = re.sub("\B\\[Uu]\w+", "", text)
|
74 |
+
text = text.replace("\\U0001f97a", "🥺")
|
75 |
+
text = text.replace("\\U0001f928", "🤨")
|
76 |
+
text = text.replace("\\U0001f9d8", "😀")
|
77 |
+
text = text.replace("\\U0001f975", "😥")
|
78 |
+
text = text.replace("\\U0001f92f", "😲")
|
79 |
+
text = text.replace("\\U0001f92d", "🤭")
|
80 |
+
text = text.replace("\\U0001f9d1", "😐")
|
81 |
+
text = text.replace("\\U000e0067", "")
|
82 |
+
text = text.replace("\\U000e006e", "")
|
83 |
+
text = text.replace("\\U0001f90d", "♥")
|
84 |
+
text = text.replace("\\U0001f973", "🎉")
|
85 |
+
text = text.replace("\\U0001fa79", "")
|
86 |
+
text = text.replace("\\U0001f92b", "🤐")
|
87 |
+
text = text.replace("\\U0001f9da", "🦋")
|
88 |
+
text = text.replace("\\U0001f90e", "♥")
|
89 |
+
text = text.replace("\\U0001f9d0", "🧐")
|
90 |
+
text = text.replace("\\U0001f9cf", "")
|
91 |
+
text = text.replace("\\U0001f92c", "😠")
|
92 |
+
text = text.replace("\\U0001f9f8", "😸")
|
93 |
+
text = text.replace("\\U0001f9b6", "💩")
|
94 |
+
text = text.replace("\\U0001f932", "🤲")
|
95 |
+
text = text.replace("\\U0001f9e1", "🧡")
|
96 |
+
text = text.replace("\\U0001f974", "☹")
|
97 |
+
text = text.replace("\\U0001f91f", "")
|
98 |
+
text = text.replace("\\U0001f9fb", "💩")
|
99 |
+
text = text.replace("\\U0001f92a", "🤪")
|
100 |
+
text = text.replace("\\U0001f9fc", "")
|
101 |
+
text = text.replace("\\U000e0065", "")
|
102 |
+
text = text.replace("\\U0001f92e", "💩")
|
103 |
+
text = text.replace("\\U000e007f", "")
|
104 |
+
text = text.replace("\\U0001f970", "🥰")
|
105 |
+
text = text.replace("\\U0001f929", "🤩")
|
106 |
+
text = text.replace("\\U0001f6f9", "")
|
107 |
+
text = text.replace("🤍", "♥")
|
108 |
+
text = text.replace("🦠", "😷")
|
109 |
+
text = text.replace("🤢", "مقرف")
|
110 |
+
text = text.replace("🤮", "مقرف")
|
111 |
+
text = text.replace("🕠", "⌚")
|
112 |
+
text = text.replace("🤬", "😠")
|
113 |
+
text = text.replace("🤧", "😷")
|
114 |
+
text = text.replace("🥳", "🎉")
|
115 |
+
text = text.replace("🥵", "🔥")
|
116 |
+
text = text.replace("🥴", "☹")
|
117 |
+
text = text.replace("🤫", "🤐")
|
118 |
+
text = text.replace("🤥", "كذاب")
|
119 |
+
text = text.replace("\\u200d", " ")
|
120 |
+
text = text.replace("u200d", " ")
|
121 |
+
text = text.replace("\\u200c", " ")
|
122 |
+
text = text.replace("u200c", " ")
|
123 |
+
text = text.replace('"', "'")
|
124 |
+
text = text.replace("\\xa0", "")
|
125 |
+
text = text.replace("\\u2066", " ")
|
126 |
+
text = re.sub("\B\\\[Uu]\w+", "", text)
|
127 |
+
text = super(NewArabicPreprocessorBalanced, self).preprocess(text)
|
128 |
+
|
129 |
+
text = " ".join(text.split())
|
130 |
+
return text
|
131 |
+
|
132 |
+
|
133 |
+
"""CNNMarbertArabicPreprocessor"""
|
134 |
+
# ASAD-CNN_MARBERT
|
135 |
+
class CNNMarbertArabicPreprocessor(ArabertPreprocessor):
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
model_name,
|
139 |
+
keep_emojis=False,
|
140 |
+
remove_html_markup=True,
|
141 |
+
replace_urls_emails_mentions=True,
|
142 |
+
remove_elongations=True,
|
143 |
+
):
|
144 |
+
if "UBC-NLP" in model_name or "CAMeL-Lab" in model_name:
|
145 |
+
keep_emojis = True
|
146 |
+
remove_elongations = False
|
147 |
+
super().__init__(
|
148 |
+
model_name,
|
149 |
+
keep_emojis,
|
150 |
+
remove_html_markup,
|
151 |
+
replace_urls_emails_mentions,
|
152 |
+
remove_elongations,
|
153 |
+
)
|
154 |
+
self.true_model_name = model_name
|
155 |
+
|
156 |
+
def preprocess(self, text):
|
157 |
+
if "UBC-NLP" in self.true_model_name:
|
158 |
+
return self.ubc_prep(text)
|
159 |
+
|
160 |
+
def ubc_prep(self, text):
|
161 |
+
text = re.sub("\s", " ", text)
|
162 |
+
text = text.replace("\\n", " ")
|
163 |
+
text = araby.strip_tashkeel(text)
|
164 |
+
text = araby.strip_tatweel(text)
|
165 |
+
# replace all possible URLs
|
166 |
+
for reg in url_regexes:
|
167 |
+
text = re.sub(reg, " URL ", text)
|
168 |
+
text = re.sub("(URL\s*)+", " URL ", text)
|
169 |
+
# replace mentions with USER
|
170 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
171 |
+
text = re.sub("(USER\s*)+", " USER ", text)
|
172 |
+
# replace hashtags with HASHTAG
|
173 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
174 |
+
text = text.replace("#", " HASH ")
|
175 |
+
text = text.replace("_", " ")
|
176 |
+
text = " ".join(text.split())
|
177 |
+
text = super(CNNMarbertArabicPreprocessor, self).preprocess(text)
|
178 |
+
text = text.replace("\u200d", " ")
|
179 |
+
text = text.replace("u200d", " ")
|
180 |
+
text = text.replace("\u200c", " ")
|
181 |
+
text = text.replace("u200c", " ")
|
182 |
+
text = text.replace('"', "'")
|
183 |
+
# text = re.sub('[\d\.]+', ' NUM ', text)
|
184 |
+
# text = re.sub('(NUM\s*)+', ' NUM ', text)
|
185 |
+
text = multiple_char_pattern.sub(r"\1\1", text)
|
186 |
+
text = " ".join(text.split())
|
187 |
+
return text
|
188 |
+
|
189 |
+
|
190 |
+
"""Trial5ArabicPreprocessor"""
|
191 |
+
|
192 |
+
|
193 |
+
class Trial5ArabicPreprocessor(ArabertPreprocessor):
|
194 |
+
def __init__(
|
195 |
+
self,
|
196 |
+
model_name,
|
197 |
+
keep_emojis=False,
|
198 |
+
remove_html_markup=True,
|
199 |
+
replace_urls_emails_mentions=True,
|
200 |
+
):
|
201 |
+
if "UBC-NLP" in model_name:
|
202 |
+
keep_emojis = True
|
203 |
+
super().__init__(
|
204 |
+
model_name, keep_emojis, remove_html_markup, replace_urls_emails_mentions
|
205 |
+
)
|
206 |
+
self.true_model_name = model_name
|
207 |
+
|
208 |
+
def preprocess(self, text):
|
209 |
+
if "UBC-NLP" in self.true_model_name:
|
210 |
+
return self.ubc_prep(text)
|
211 |
+
|
212 |
+
def ubc_prep(self, text):
|
213 |
+
text = re.sub("\s", " ", text)
|
214 |
+
text = text.replace("\\n", " ")
|
215 |
+
text = araby.strip_tashkeel(text)
|
216 |
+
text = araby.strip_tatweel(text)
|
217 |
+
# replace all possible URLs
|
218 |
+
for reg in url_regexes:
|
219 |
+
text = re.sub(reg, " URL ", text)
|
220 |
+
# replace mentions with USER
|
221 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
222 |
+
# replace hashtags with HASHTAG
|
223 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
224 |
+
text = text.replace("#", " HASH TAG ")
|
225 |
+
text = text.replace("_", " ")
|
226 |
+
text = " ".join(text.split())
|
227 |
+
text = super(Trial5ArabicPreprocessor, self).preprocess(text)
|
228 |
+
# text = text.replace("السلام عليكم"," ")
|
229 |
+
# text = text.replace(find_near_matches("السلام عليكم",text,max_deletions=3,max_l_dist=3)[0].matched," ")
|
230 |
+
return text
|
231 |
+
|
232 |
+
|
233 |
+
"""SarcasmArabicPreprocessor"""
|
234 |
+
|
235 |
+
|
236 |
+
class SarcasmArabicPreprocessor(ArabertPreprocessor):
|
237 |
+
def __init__(
|
238 |
+
self,
|
239 |
+
model_name,
|
240 |
+
keep_emojis=False,
|
241 |
+
remove_html_markup=True,
|
242 |
+
replace_urls_emails_mentions=True,
|
243 |
+
):
|
244 |
+
if "UBC-NLP" in model_name:
|
245 |
+
keep_emojis = True
|
246 |
+
super().__init__(
|
247 |
+
model_name, keep_emojis, remove_html_markup, replace_urls_emails_mentions
|
248 |
+
)
|
249 |
+
self.true_model_name = model_name
|
250 |
+
|
251 |
+
def preprocess(self, text):
|
252 |
+
if "UBC-NLP" in self.true_model_name:
|
253 |
+
return self.ubc_prep(text)
|
254 |
+
else:
|
255 |
+
return super(SarcasmArabicPreprocessor, self).preprocess(text)
|
256 |
+
|
257 |
+
def ubc_prep(self, text):
|
258 |
+
text = re.sub("\s", " ", text)
|
259 |
+
text = text.replace("\\n", " ")
|
260 |
+
text = araby.strip_tashkeel(text)
|
261 |
+
text = araby.strip_tatweel(text)
|
262 |
+
# replace all possible URLs
|
263 |
+
for reg in url_regexes:
|
264 |
+
text = re.sub(reg, " URL ", text)
|
265 |
+
# replace mentions with USER
|
266 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
267 |
+
# replace hashtags with HASHTAG
|
268 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
269 |
+
text = text.replace("#", " HASH TAG ")
|
270 |
+
text = text.replace("_", " ")
|
271 |
+
text = text.replace('"', " ")
|
272 |
+
text = " ".join(text.split())
|
273 |
+
text = super(SarcasmArabicPreprocessor, self).preprocess(text)
|
274 |
+
return text
|
275 |
+
|
276 |
+
|
277 |
+
"""NoAOAArabicPreprocessor"""
|
278 |
+
|
279 |
+
|
280 |
+
class NoAOAArabicPreprocessor(ArabertPreprocessor):
|
281 |
+
def __init__(
|
282 |
+
self,
|
283 |
+
model_name,
|
284 |
+
keep_emojis=False,
|
285 |
+
remove_html_markup=True,
|
286 |
+
replace_urls_emails_mentions=True,
|
287 |
+
):
|
288 |
+
if "UBC-NLP" in model_name:
|
289 |
+
keep_emojis = True
|
290 |
+
super().__init__(
|
291 |
+
model_name, keep_emojis, remove_html_markup, replace_urls_emails_mentions
|
292 |
+
)
|
293 |
+
self.true_model_name = model_name
|
294 |
+
|
295 |
+
def preprocess(self, text):
|
296 |
+
if "UBC-NLP" in self.true_model_name:
|
297 |
+
return self.ubc_prep(text)
|
298 |
+
else:
|
299 |
+
return super(NoAOAArabicPreprocessor, self).preprocess(text)
|
300 |
+
|
301 |
+
def ubc_prep(self, text):
|
302 |
+
text = re.sub("\s", " ", text)
|
303 |
+
text = text.replace("\\n", " ")
|
304 |
+
text = araby.strip_tashkeel(text)
|
305 |
+
text = araby.strip_tatweel(text)
|
306 |
+
# replace all possible URLs
|
307 |
+
for reg in url_regexes:
|
308 |
+
text = re.sub(reg, " URL ", text)
|
309 |
+
# replace mentions with USER
|
310 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
311 |
+
# replace hashtags with HASHTAG
|
312 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
313 |
+
text = text.replace("#", " HASH TAG ")
|
314 |
+
text = text.replace("_", " ")
|
315 |
+
text = " ".join(text.split())
|
316 |
+
text = super(NoAOAArabicPreprocessor, self).preprocess(text)
|
317 |
+
text = text.replace("السلام عليكم", " ")
|
318 |
+
text = text.replace("ورحمة الله وبركاته", " ")
|
319 |
+
matched = find_near_matches("السلام عليكم", text, max_deletions=3, max_l_dist=3)
|
320 |
+
if len(matched) > 0:
|
321 |
+
text = text.replace(matched[0].matched, " ")
|
322 |
+
matched = find_near_matches(
|
323 |
+
"ورحمة الله وبركاته", text, max_deletions=3, max_l_dist=3
|
324 |
+
)
|
325 |
+
if len(matched) > 0:
|
326 |
+
text = text.replace(matched[0].matched, " ")
|
327 |
+
return text
|
328 |
+
|
329 |
+
|
330 |
+
class CnnBertForSequenceClassification(BertPreTrainedModel):
|
331 |
+
def __init__(self, config):
|
332 |
+
super().__init__(config)
|
333 |
+
self.num_labels = config.num_labels
|
334 |
+
self.config = config
|
335 |
+
|
336 |
+
self.bert = BertModel(config)
|
337 |
+
|
338 |
+
filter_sizes = [1, 2, 3, 4, 5]
|
339 |
+
num_filters = 32
|
340 |
+
self.convs1 = nn.ModuleList(
|
341 |
+
[nn.Conv2d(4, num_filters, (K, config.hidden_size)) for K in filter_sizes]
|
342 |
+
)
|
343 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
344 |
+
self.classifier = nn.Linear(len(filter_sizes) * num_filters, config.num_labels)
|
345 |
+
|
346 |
+
self.init_weights()
|
347 |
+
|
348 |
+
def forward(
|
349 |
+
self,
|
350 |
+
input_ids=None,
|
351 |
+
attention_mask=None,
|
352 |
+
token_type_ids=None,
|
353 |
+
position_ids=None,
|
354 |
+
head_mask=None,
|
355 |
+
inputs_embeds=None,
|
356 |
+
labels=None,
|
357 |
+
output_attentions=None,
|
358 |
+
output_hidden_states=None,
|
359 |
+
return_dict=None,
|
360 |
+
):
|
361 |
+
|
362 |
+
return_dict = (
|
363 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
364 |
+
)
|
365 |
+
|
366 |
+
outputs = self.bert(
|
367 |
+
input_ids,
|
368 |
+
attention_mask=attention_mask,
|
369 |
+
token_type_ids=token_type_ids,
|
370 |
+
position_ids=position_ids,
|
371 |
+
head_mask=head_mask,
|
372 |
+
inputs_embeds=inputs_embeds,
|
373 |
+
output_attentions=output_attentions,
|
374 |
+
output_hidden_states=output_hidden_states,
|
375 |
+
return_dict=return_dict,
|
376 |
+
)
|
377 |
+
|
378 |
+
x = outputs[2][-4:]
|
379 |
+
|
380 |
+
x = torch.stack(x, dim=1)
|
381 |
+
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs1]
|
382 |
+
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x]
|
383 |
+
x = torch.cat(x, 1)
|
384 |
+
x = self.dropout(x)
|
385 |
+
logits = self.classifier(x)
|
386 |
+
|
387 |
+
loss = None
|
388 |
+
if labels is not None:
|
389 |
+
if self.config.problem_type is None:
|
390 |
+
if self.num_labels == 1:
|
391 |
+
self.config.problem_type = "regression"
|
392 |
+
elif self.num_labels > 1 and (
|
393 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
394 |
+
):
|
395 |
+
self.config.problem_type = "single_label_classification"
|
396 |
+
else:
|
397 |
+
self.config.problem_type = "multi_label_classification"
|
398 |
+
|
399 |
+
if self.config.problem_type == "regression":
|
400 |
+
loss_fct = nn.MSELoss()
|
401 |
+
if self.num_labels == 1:
|
402 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
403 |
+
else:
|
404 |
+
loss = loss_fct(logits, labels)
|
405 |
+
elif self.config.problem_type == "single_label_classification":
|
406 |
+
loss_fct = nn.CrossEntropyLoss()
|
407 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
408 |
+
elif self.config.problem_type == "multi_label_classification":
|
409 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
410 |
+
loss = loss_fct(logits, labels)
|
411 |
+
if not return_dict:
|
412 |
+
output = (logits,) + outputs[2:]
|
413 |
+
return ((loss,) + output) if loss is not None else output
|
414 |
+
|
415 |
+
return SequenceClassifierOutput(
|
416 |
+
loss=loss,
|
417 |
+
logits=logits,
|
418 |
+
hidden_states=None,
|
419 |
+
attentions=outputs.attentions,
|
420 |
+
)
|
421 |
+
|
422 |
+
|
423 |
+
class CNNTextClassificationPipeline:
|
424 |
+
def __init__(self, model_path, device, return_all_scores=False):
|
425 |
+
self.model_path = model_path
|
426 |
+
self.model = CnnBertForSequenceClassification.from_pretrained(self.model_path)
|
427 |
+
# Special handling
|
428 |
+
self.device = torch.device("cpu" if device < 0 else f"cuda:{device}")
|
429 |
+
if self.device.type == "cuda":
|
430 |
+
self.model = self.model.to(self.device)
|
431 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
432 |
+
self.return_all_scores = return_all_scores
|
433 |
+
|
434 |
+
@contextmanager
|
435 |
+
def device_placement(self):
|
436 |
+
"""
|
437 |
+
Context Manager allowing tensor allocation on the user-specified device in framework agnostic way.
|
438 |
+
Returns:
|
439 |
+
Context manager
|
440 |
+
Examples::
|
441 |
+
# Explicitly ask for tensor allocation on CUDA device :0
|
442 |
+
pipe = pipeline(..., device=0)
|
443 |
+
with pipe.device_placement():
|
444 |
+
# Every framework specific tensor allocation will be done on the request device
|
445 |
+
output = pipe(...)
|
446 |
+
"""
|
447 |
+
|
448 |
+
if self.device.type == "cuda":
|
449 |
+
torch.cuda.set_device(self.device)
|
450 |
+
|
451 |
+
yield
|
452 |
+
|
453 |
+
def ensure_tensor_on_device(self, **inputs):
|
454 |
+
"""
|
455 |
+
Ensure PyTorch tensors are on the specified device.
|
456 |
+
Args:
|
457 |
+
inputs (keyword arguments that should be :obj:`torch.Tensor`): The tensors to place on :obj:`self.device`.
|
458 |
+
Return:
|
459 |
+
:obj:`Dict[str, torch.Tensor]`: The same as :obj:`inputs` but on the proper device.
|
460 |
+
"""
|
461 |
+
return {
|
462 |
+
name: tensor.to(self.device) if isinstance(tensor, torch.Tensor) else tensor
|
463 |
+
for name, tensor in inputs.items()
|
464 |
+
}
|
465 |
+
|
466 |
+
def __call__(self, text):
|
467 |
+
"""
|
468 |
+
Classify the text(s) given as inputs.
|
469 |
+
Args:
|
470 |
+
args (:obj:`str` or :obj:`List[str]`):
|
471 |
+
One or several texts (or one list of prompts) to classify.
|
472 |
+
Return:
|
473 |
+
A list or a list of list of :obj:`dict`: Each result comes as list of dictionaries with the following keys:
|
474 |
+
- **label** (:obj:`str`) -- The label predicted.
|
475 |
+
- **score** (:obj:`float`) -- The corresponding probability.
|
476 |
+
If ``self.return_all_scores=True``, one such dictionary is returned per label.
|
477 |
+
"""
|
478 |
+
# outputs = super().__call__(*args, **kwargs)
|
479 |
+
inputs = self.tokenizer.batch_encode_plus(
|
480 |
+
text,
|
481 |
+
add_special_tokens=True,
|
482 |
+
max_length=64,
|
483 |
+
padding=True,
|
484 |
+
truncation="longest_first",
|
485 |
+
return_tensors="pt",
|
486 |
+
)
|
487 |
+
|
488 |
+
with torch.no_grad():
|
489 |
+
inputs = self.ensure_tensor_on_device(**inputs)
|
490 |
+
predictions = self.model(**inputs)[0].cpu()
|
491 |
+
|
492 |
+
predictions = predictions.numpy()
|
493 |
+
|
494 |
+
if self.model.config.num_labels == 1:
|
495 |
+
scores = 1.0 / (1.0 + np.exp(-predictions))
|
496 |
+
else:
|
497 |
+
scores = np.exp(predictions) / np.exp(predictions).sum(-1, keepdims=True)
|
498 |
+
if self.return_all_scores:
|
499 |
+
return [
|
500 |
+
[
|
501 |
+
{"label": self.model.config.id2label[i], "score": score.item()}
|
502 |
+
for i, score in enumerate(item)
|
503 |
+
]
|
504 |
+
for item in scores
|
505 |
+
]
|
506 |
+
else:
|
507 |
+
return [
|
508 |
+
{"label": self.inv_label_map[item.argmax()], "score": item.max().item()}
|
509 |
+
for item in scores
|
510 |
+
]
|
backend/services.py
CHANGED
@@ -1,9 +1,17 @@
|
|
1 |
import json
|
2 |
import os
|
|
|
|
|
|
|
|
|
3 |
import requests
|
|
|
4 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, set_seed
|
|
|
5 |
from .modeling_gpt2 import GPT2LMHeadModel as GROVERLMHeadModel
|
6 |
from .preprocess import ArabertPreprocessor
|
|
|
|
|
7 |
|
8 |
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py
|
9 |
class TextGeneration:
|
@@ -170,3 +178,172 @@ class TextGeneration:
|
|
170 |
},
|
171 |
}
|
172 |
return self.query(payload, model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import more_itertools
|
6 |
+
import pandas as pd
|
7 |
import requests
|
8 |
+
from tqdm.auto import tqdm
|
9 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, set_seed
|
10 |
+
|
11 |
from .modeling_gpt2 import GPT2LMHeadModel as GROVERLMHeadModel
|
12 |
from .preprocess import ArabertPreprocessor
|
13 |
+
from .sa_utils import *
|
14 |
+
from .utils import download_models
|
15 |
|
16 |
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py
|
17 |
class TextGeneration:
|
|
|
178 |
},
|
179 |
}
|
180 |
return self.query(payload, model_name)
|
181 |
+
|
182 |
+
|
183 |
+
class SentimentAnalyzer:
|
184 |
+
def __init__(self):
|
185 |
+
self.sa_models = [
|
186 |
+
"sa_trial5_1",
|
187 |
+
"sa_no_aoa_in_neutral",
|
188 |
+
"sa_cnnbert",
|
189 |
+
"sa_sarcasm",
|
190 |
+
"sar_trial10",
|
191 |
+
"sa_no_AOA",
|
192 |
+
]
|
193 |
+
self.model_repos = download_models(self.sa_models)
|
194 |
+
# fmt: off
|
195 |
+
self.processors = {
|
196 |
+
"sa_trial5_1": Trial5ArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
197 |
+
"sa_no_aoa_in_neutral": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
|
198 |
+
"sa_cnnbert": CNNMarbertArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
199 |
+
"sa_sarcasm": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
200 |
+
"sar_trial10": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
201 |
+
"sa_no_AOA": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
|
202 |
+
}
|
203 |
+
|
204 |
+
self.pipelines = {
|
205 |
+
"sa_trial5_1": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format(self.model_repos["sa_trial5_1"],i), device=-1,return_all_scores =True) for i in range(0,5)],
|
206 |
+
"sa_no_aoa_in_neutral": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format(self.model_repos["sa_no_aoa_in_neutral"],i), device=-1,return_all_scores =True) for i in range(0,5)],
|
207 |
+
"sa_cnnbert": [CNNTextClassificationPipeline("{}/train_{}/best_model".format(self.model_repos["sa_cnnbert"],i), device=-1, return_all_scores =True) for i in range(0,5)],
|
208 |
+
"sa_sarcasm": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format(self.model_repos["sa_sarcasm"],i), device=-1,return_all_scores =True) for i in range(0,5)],
|
209 |
+
"sar_trial10": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format(self.model_repos["sar_trial10"],i), device=-1,return_all_scores =True) for i in range(0,5)],
|
210 |
+
"sa_no_AOA": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format(self.model_repos["sa_no_aoa_in_neutral"],i), device=-1,return_all_scores =True) for i in range(0,5)],
|
211 |
+
}
|
212 |
+
# fmt: on
|
213 |
+
|
214 |
+
def get_sarcasm_label(self, texts):
|
215 |
+
prep = self.processors["sar_trial10"]
|
216 |
+
prep_texts = [prep.preprocess(x) for x in texts]
|
217 |
+
|
218 |
+
preds_df = pd.DataFrame([])
|
219 |
+
for i in range(0, 5):
|
220 |
+
preds = []
|
221 |
+
for s in tqdm(more_itertools.chunked(list(prep_texts), 128)):
|
222 |
+
preds.extend(self.pipelines["sar_trial10"][i](s))
|
223 |
+
preds_df[f"model_{i}"] = preds
|
224 |
+
|
225 |
+
final_labels = []
|
226 |
+
final_scores = []
|
227 |
+
for id, row in preds_df.iterrows():
|
228 |
+
pos_total = 0
|
229 |
+
neu_total = 0
|
230 |
+
for pred in row[:]:
|
231 |
+
pos_total += pred[0]["score"]
|
232 |
+
neu_total += pred[1]["score"]
|
233 |
+
|
234 |
+
pos_avg = pos_total / len(row[:])
|
235 |
+
neu_avg = neu_total / len(row[:])
|
236 |
+
|
237 |
+
final_labels.append(
|
238 |
+
self.pipelines["sar_trial10"][0].model.config.id2label[
|
239 |
+
np.argmax([pos_avg, neu_avg])
|
240 |
+
]
|
241 |
+
)
|
242 |
+
final_scores.append(np.max([pos_avg, neu_avg]))
|
243 |
+
|
244 |
+
return final_labels, final_scores
|
245 |
+
|
246 |
+
def get_preds_from_a_model(self, texts: List[str], model_name):
|
247 |
+
prep = self.processors[model_name]
|
248 |
+
|
249 |
+
prep_texts = [prep.preprocess(x) for x in texts]
|
250 |
+
if model_name == "sa_sarcasm":
|
251 |
+
sarcasm_label, _ = self.get_preds_from_sarcasm(texts, "sar_trial10")
|
252 |
+
sarcastic_map = {"Not_Sarcastic": "غير ساخر", "Sarcastic": "ساخر"}
|
253 |
+
labeled_prep_texts = []
|
254 |
+
for t, l in zip(prep_texts, sarcasm_label):
|
255 |
+
labeled_prep_texts.append(sarcastic_map[l] + " [SEP] " + t)
|
256 |
+
|
257 |
+
preds_df = pd.DataFrame([])
|
258 |
+
for i in range(0, 5):
|
259 |
+
preds = []
|
260 |
+
for s in tqdm(more_itertools.chunked(list(prep_texts), 128)):
|
261 |
+
preds.extend(self.pipelines[model_name][i](s))
|
262 |
+
preds_df[f"model_{i}"] = preds
|
263 |
+
|
264 |
+
final_labels = []
|
265 |
+
final_scores = []
|
266 |
+
final_scores_list = []
|
267 |
+
for id, row in preds_df.iterrows():
|
268 |
+
pos_total = 0
|
269 |
+
neg_total = 0
|
270 |
+
neu_total = 0
|
271 |
+
for pred in row[2:]:
|
272 |
+
pos_total += pred[0]["score"]
|
273 |
+
neu_total += pred[1]["score"]
|
274 |
+
neg_total += pred[2]["score"]
|
275 |
+
|
276 |
+
pos_avg = pos_total / 5
|
277 |
+
neu_avg = neu_total / 5
|
278 |
+
neg_avg = neg_total / 5
|
279 |
+
|
280 |
+
if model_name == "sa_no_aoa_in_neutral":
|
281 |
+
final_labels.append(
|
282 |
+
self.pipelines[model_name][0].model.config.id2label[
|
283 |
+
np.argmax([neu_avg, neg_avg, pos_avg])
|
284 |
+
]
|
285 |
+
)
|
286 |
+
else:
|
287 |
+
final_labels.append(
|
288 |
+
self.pipelines[model_name][0].model.config.id2label[
|
289 |
+
np.argmax([pos_avg, neu_avg, neg_avg])
|
290 |
+
]
|
291 |
+
)
|
292 |
+
final_scores.append(np.max([pos_avg, neu_avg, neg_avg]))
|
293 |
+
final_scores_list.append((pos_avg, neu_avg, neg_avg))
|
294 |
+
|
295 |
+
return final_labels, final_scores, final_scores_list
|
296 |
+
|
297 |
+
def predict(self, texts: List[str]):
|
298 |
+
(
|
299 |
+
new_balanced_label,
|
300 |
+
new_balanced_score,
|
301 |
+
new_balanced_score_list,
|
302 |
+
) = self.get_preds_from_a_model(texts, "sa_no_aoa_in_neutral")
|
303 |
+
(
|
304 |
+
cnn_marbert_label,
|
305 |
+
cnn_marbert_score,
|
306 |
+
cnn_marbert_score_list,
|
307 |
+
) = self.get_preds_from_a_model(texts, "sa_cnnbert")
|
308 |
+
trial5_label, trial5_score, trial5_score_list = self.get_preds_from_a_model(
|
309 |
+
texts, "sa_trial5_1"
|
310 |
+
)
|
311 |
+
no_aoa_label, no_aoa_score, no_aoa_score_list = self.get_preds_from_a_model(
|
312 |
+
texts, "sa_no_AOA"
|
313 |
+
)
|
314 |
+
sarcasm_label, sarcasm_score, sarcasm_score_list = self.get_preds_from_a_model(
|
315 |
+
texts, "sa_sarcasm"
|
316 |
+
)
|
317 |
+
|
318 |
+
id_label_map = {0: "Positive", 1: "Neutral", 2: "Negative"}
|
319 |
+
|
320 |
+
final_ensemble_prediction = []
|
321 |
+
final_ensemble_score = []
|
322 |
+
final_ensemble_all_score = []
|
323 |
+
for entry in zip(
|
324 |
+
new_balanced_score_list,
|
325 |
+
cnn_marbert_score_list,
|
326 |
+
trial5_score_list,
|
327 |
+
no_aoa_score_list,
|
328 |
+
sarcasm_score_list,
|
329 |
+
):
|
330 |
+
pos_score = 0
|
331 |
+
neu_score = 0
|
332 |
+
neg_score = 0
|
333 |
+
for s in entry:
|
334 |
+
pos_score += s[0] * 1.57
|
335 |
+
neu_score += s[1] * 0.98
|
336 |
+
neg_score += s[2] * 0.93
|
337 |
+
|
338 |
+
# weighted 2
|
339 |
+
# pos_score += s[0]*1.67
|
340 |
+
# neu_score += s[1]
|
341 |
+
# neg_score += s[2]*0.95
|
342 |
+
|
343 |
+
final_ensemble_prediction.append(
|
344 |
+
id_label_map[np.argmax([pos_score, neu_score, neg_score])]
|
345 |
+
)
|
346 |
+
final_ensemble_score.append(np.max([pos_score, neu_score, neg_score]))
|
347 |
+
final_ensemble_all_score.append((pos_score, neu_score, neg_score))
|
348 |
+
|
349 |
+
return final_ensemble_prediction, final_ensemble_score, final_ensemble_all_score
|
backend/utils.py
CHANGED
@@ -1,6 +1,16 @@
|
|
1 |
import psutil
|
|
|
2 |
|
3 |
|
4 |
def get_current_ram_usage():
|
5 |
ram = psutil.virtual_memory()
|
6 |
return ram.available / 1024 / 1024 / 1024, ram.total / 1024 / 1024 / 1024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import psutil
|
2 |
+
from huggingface_hub import Repository
|
3 |
|
4 |
|
5 |
def get_current_ram_usage():
|
6 |
ram = psutil.virtual_memory()
|
7 |
return ram.available / 1024 / 1024 / 1024, ram.total / 1024 / 1024 / 1024
|
8 |
+
|
9 |
+
|
10 |
+
def download_models(models):
|
11 |
+
model_dirs = {}
|
12 |
+
for model in models:
|
13 |
+
model_dirs[model] = Repository(
|
14 |
+
model, clone_from=f"https://huggingface.co/researchaccount/{model}"
|
15 |
+
)
|
16 |
+
return model_dirs
|
requirements.txt
CHANGED
@@ -7,4 +7,6 @@ emoji==1.4.2
|
|
7 |
awesome_streamlit
|
8 |
torch==1.9.0
|
9 |
transformers==4.10.0
|
10 |
-
psutil==5.8.0
|
|
|
|
|
|
7 |
awesome_streamlit
|
8 |
torch==1.9.0
|
9 |
transformers==4.10.0
|
10 |
+
psutil==5.8.0
|
11 |
+
fuzzysearch==0.7.3
|
12 |
+
more-itertools==8.9.0
|