Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- README.md +5 -5
- app.py +206 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
-
title: Dataset
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Dataset Insights Explorer
|
3 |
+
emoji: π»
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
TODOS:
|
3 |
+
- Improve prompts
|
4 |
+
- Improve model usage (Quantization?)
|
5 |
+
- Improve error handling
|
6 |
+
- Add more tests
|
7 |
+
- Improve response in a friendly way
|
8 |
+
"""
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
12 |
+
import duckdb
|
13 |
+
import pandas as pd
|
14 |
+
import requests
|
15 |
+
from outlines import prompt
|
16 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
17 |
+
import spaces
|
18 |
+
import json
|
19 |
+
import torch
|
20 |
+
import logging
|
21 |
+
|
22 |
+
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
"""
|
26 |
+
Methods for generating potential questions and SQL queries
|
27 |
+
"""
|
28 |
+
device = "cuda"
|
29 |
+
gemma_model_id = "google/gemma-2b-it"
|
30 |
+
gemma_tokenizer = AutoTokenizer.from_pretrained(gemma_model_id)
|
31 |
+
gemma_model = AutoModelForCausalLM.from_pretrained(
|
32 |
+
gemma_model_id,
|
33 |
+
device_map="auto",
|
34 |
+
torch_dtype=torch.bfloat16
|
35 |
+
)
|
36 |
+
|
37 |
+
@spaces.GPU
|
38 |
+
def generate_potential_questions_with_gemma(prompt):
|
39 |
+
input_ids = gemma_tokenizer(prompt, return_tensors="pt").to(device)
|
40 |
+
outputs = gemma_model.generate(**input_ids, max_new_tokens=1024)
|
41 |
+
return gemma_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
42 |
+
|
43 |
+
|
44 |
+
@prompt
|
45 |
+
def prompt_for_questions(dataset, schema, first_rows):
|
46 |
+
"""
|
47 |
+
You are a data analyst tasked with exploring a dataset named {{ dataset }}.
|
48 |
+
Below is the dataset schema in SQL format along with a sample of 3 rows:
|
49 |
+
{{ schema }}
|
50 |
+
Sample rows:
|
51 |
+
{% for example in first_rows %}
|
52 |
+
{{ example}}
|
53 |
+
{% endfor %}
|
54 |
+
Your goal is to generate a list of 5 potential questions that a user might want
|
55 |
+
to ask about this dataset. Consider the information contained in the provided
|
56 |
+
columns and rows, and try to think of meaningful questions that could
|
57 |
+
provide insights or useful information. For each question, provide the SQL query
|
58 |
+
that would extract the relevant information from the dataset.
|
59 |
+
Ouput JSON format:
|
60 |
+
{
|
61 |
+
"questions": [
|
62 |
+
{"question": [Insert question here]", "sql_query": "[Insert SQL query here]"},
|
63 |
+
{"question": [Insert question here]", "sql_query": "[Insert SQL query here]"},
|
64 |
+
{"question": [Insert question here]", "sql_query": "[Insert SQL query here]"},
|
65 |
+
{"question": [Insert question here]", "sql_query": "[Insert SQL query here]"},
|
66 |
+
{"question": [Insert question here]", "sql_query": "[Insert SQL query here]"},
|
67 |
+
]
|
68 |
+
}
|
69 |
+
Please ensure that each SQL query retrieves relevant information from the dataset to answer the corresponding question accurately.
|
70 |
+
Return only the JSON object, do not add extra information.
|
71 |
+
"""
|
72 |
+
|
73 |
+
"""
|
74 |
+
Methods for generating and SQL based on a user request
|
75 |
+
"""
|
76 |
+
mother_duckdb_model_id = "motherduckdb/DuckDB-NSQL-7B-v0.1"
|
77 |
+
mother_duck_tokenizer = AutoTokenizer.from_pretrained(mother_duckdb_model_id)
|
78 |
+
mother_duck_model = AutoModelForCausalLM.from_pretrained(
|
79 |
+
mother_duckdb_model_id,
|
80 |
+
device_map="auto",
|
81 |
+
torch_dtype=torch.bfloat16
|
82 |
+
)
|
83 |
+
|
84 |
+
@spaces.GPU
|
85 |
+
def generate_sql_with_mother_duck(prompt):
|
86 |
+
input_ids = mother_duck_tokenizer(prompt, return_tensors="pt").to(device).input_ids
|
87 |
+
generated_ids = mother_duck_model.generate(input_ids, max_length=1024)
|
88 |
+
return mother_duck_tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
89 |
+
|
90 |
+
|
91 |
+
@prompt
|
92 |
+
def prompt_for_sql(ddl_create, query_input):
|
93 |
+
"""
|
94 |
+
### Instruction:
|
95 |
+
Your task is to generate valid duckdb SQL to answer the following question.
|
96 |
+
### Input:
|
97 |
+
Here is the database schema that the SQL query will run on:
|
98 |
+
{{ ddl_create }}
|
99 |
+
|
100 |
+
### Question:
|
101 |
+
{{ query_input }}
|
102 |
+
### Response (use duckdb shorthand if possible):
|
103 |
+
"""
|
104 |
+
|
105 |
+
|
106 |
+
"""
|
107 |
+
Datasets Viewer Methods
|
108 |
+
https://huggingface.co/docs/datasets-server/index
|
109 |
+
"""
|
110 |
+
|
111 |
+
def get_first_parquet(dataset: str):
|
112 |
+
resp = requests.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}")
|
113 |
+
return resp.json()["parquet_files"][0]
|
114 |
+
|
115 |
+
|
116 |
+
def get_dataset_schema(parquet_url: str):
|
117 |
+
con = duckdb.connect()
|
118 |
+
con.execute(f"CREATE TABLE data as SELECT * FROM '{parquet_url}' LIMIT 1;")
|
119 |
+
result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df()
|
120 |
+
ddl_create = result.iloc[0,0]
|
121 |
+
con.close()
|
122 |
+
return ddl_create
|
123 |
+
|
124 |
+
|
125 |
+
def get_first_rows_as_df(dataset: str, config: str, split: str, limit:int):
|
126 |
+
resp = requests.get(f"{BASE_DATASETS_SERVER_URL}/first-rows?dataset={dataset}&config={config}&split={split}")
|
127 |
+
rows = resp.json()["rows"]
|
128 |
+
rows = [row['row'] for row in rows]
|
129 |
+
return pd.DataFrame.from_dict(rows).sample(frac = 1).head(limit)
|
130 |
+
|
131 |
+
"""
|
132 |
+
Main logic, to get the recommended queries
|
133 |
+
"""
|
134 |
+
def get_recommended_queries(dataset: str):
|
135 |
+
ddl_create, prompt = "", ""
|
136 |
+
try:
|
137 |
+
first_split = get_first_parquet(dataset)
|
138 |
+
df_first_rows = get_first_rows_as_df(dataset, first_split["config"], first_split["split"], 3)
|
139 |
+
first_parquet_url = first_split["url"]
|
140 |
+
logger.info(f"First parquet URL: {first_parquet_url}")
|
141 |
+
ddl_create = get_dataset_schema(first_parquet_url)
|
142 |
+
prompt = prompt_for_questions(dataset, ddl_create, df_first_rows.to_dict('records'))
|
143 |
+
txt_questions = generate_potential_questions_with_gemma(prompt).split("``json")[1].replace('\n', ' ').strip()[:-4]
|
144 |
+
data = json.loads(txt_questions)
|
145 |
+
questions = data["questions"]
|
146 |
+
potential_questions = []
|
147 |
+
for question in questions:
|
148 |
+
try:
|
149 |
+
sql = question["sql_query"].replace("FROM data", f"FROM '{first_parquet_url}'")
|
150 |
+
result = duckdb.sql(sql).df()
|
151 |
+
potential_questions.append({"question": question["question"], "result": result, "sql_query": sql})
|
152 |
+
continue
|
153 |
+
except Exception as err:
|
154 |
+
logger.error(f"Error in running SQL query: {question['sql_query']} {err}")
|
155 |
+
mother_duck_prompt = prompt_for_sql(ddl_create, question["question"])
|
156 |
+
sql = generate_sql_with_mother_duck(mother_duck_prompt).split("### Response (use duckdb shorthand if possible):")[-1].strip()
|
157 |
+
sql = sql.replace("FROM data", f"FROM '{first_parquet_url}'")
|
158 |
+
try:
|
159 |
+
result = duckdb.sql(sql).df()
|
160 |
+
potential_questions.append({"question": question["question"], "result": result, "sql_query": sql})
|
161 |
+
except:
|
162 |
+
pass
|
163 |
+
df_result = pd.DataFrame(potential_questions)
|
164 |
+
except Exception as err:
|
165 |
+
logger.error(f"Error in getting recommended queries: {err}")
|
166 |
+
return {
|
167 |
+
gr_txt_ddl: ddl_create,
|
168 |
+
gr_txt_prompt: prompt,
|
169 |
+
gr_df_result: pd.DataFrame([{"error": f"β {err=}"}])
|
170 |
+
}
|
171 |
+
return {
|
172 |
+
gr_txt_ddl: ddl_create,
|
173 |
+
gr_txt_prompt: prompt,
|
174 |
+
gr_df_result: df_result
|
175 |
+
}
|
176 |
+
|
177 |
+
|
178 |
+
def preview_dataset(dataset: str):
|
179 |
+
try:
|
180 |
+
first_split = get_first_parquet(dataset)
|
181 |
+
df = get_first_rows_as_df(dataset, first_split["config"], first_split["split"], 4)
|
182 |
+
except Exception as err:
|
183 |
+
df = pd.DataFrame([{"Unable to preview dataset": f"β {err=}"}])
|
184 |
+
return {
|
185 |
+
gr_df_first_rows: df
|
186 |
+
}
|
187 |
+
|
188 |
+
|
189 |
+
with gr.Blocks() as demo:
|
190 |
+
gr.Markdown("# π« Dataset Insights Explorer π«")
|
191 |
+
gr_dataset_name = HuggingfaceHubSearch(
|
192 |
+
label="Hub Dataset ID",
|
193 |
+
placeholder="Search for dataset id on Huggingface",
|
194 |
+
search_type="dataset",
|
195 |
+
value="jamescalam/world-cities-geo",
|
196 |
+
)
|
197 |
+
gr_preview_btn = gr.Button("Preview Dataset")
|
198 |
+
gr_df_first_rows = gr.DataFrame(datatype="markdown")
|
199 |
+
gr_recommend_btn = gr.Button("Show Insights")
|
200 |
+
gr_df_result = gr.DataFrame(datatype="markdown")
|
201 |
+
with gr.Accordion("Open for details", open=False):
|
202 |
+
gr_txt_ddl = gr.Textbox(label="Dataset as CREATE DDL", interactive= False)
|
203 |
+
gr_txt_prompt = gr.Textbox(label="Generated prompt to get recommended questions", interactive= False)
|
204 |
+
gr_preview_btn.click(preview_dataset, inputs=[gr_dataset_name], outputs=[gr_df_first_rows])
|
205 |
+
gr_recommend_btn.click(get_recommended_queries, inputs=[gr_dataset_name], outputs=[gr_txt_ddl, gr_txt_prompt, gr_df_result])
|
206 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio_huggingfacehub_search==0.0.7
|
2 |
+
duckdb
|
3 |
+
pandas
|
4 |
+
outlines
|
5 |
+
transformers
|
6 |
+
accelerate
|