Spaces:
Runtime error
Runtime error
asiffarhankhan
commited on
Commit
•
66eba67
1
Parent(s):
78e7c24
Add update to buzz user on being idle
Browse files- .gitignore +1 -0
- app.py +38 -94
- app_utils.py +90 -0
- assets/char_poses_base64.py +0 -0
- assets/timeout_audio.mp3 +0 -0
.gitignore
CHANGED
@@ -3,3 +3,4 @@ __pycache__
|
|
3 |
.chroma
|
4 |
initialize.sh
|
5 |
conversations.log
|
|
|
|
3 |
.chroma
|
4 |
initialize.sh
|
5 |
conversations.log
|
6 |
+
custom_gpt_voice assistant_demo.mp4
|
app.py
CHANGED
@@ -1,100 +1,45 @@
|
|
1 |
-
|
2 |
import os
|
3 |
-
import
|
4 |
import openai
|
5 |
-
import
|
6 |
-
import logging
|
7 |
-
import base64
|
8 |
import gradio as gr
|
9 |
-
from
|
10 |
-
|
11 |
-
from langchain import OpenAI
|
12 |
-
from langchain.chains import RetrievalQA
|
13 |
-
from langchain.vectorstores import Chroma
|
14 |
-
from langchain.document_loaders import DirectoryLoader
|
15 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
16 |
-
from langchain.text_splitter import CharacterTextSplitter
|
17 |
-
from assets.char_poses_base64 import idle_html_base_64, thinking_html_base_64, talking_html_base64
|
18 |
-
|
19 |
-
logging.basicConfig(level="INFO",
|
20 |
-
filename='conversations.log',
|
21 |
-
filemode='a',
|
22 |
-
format='%(asctime)s %(message)s',
|
23 |
-
datefmt='%H:%M:%S')
|
24 |
|
25 |
-
|
|
|
26 |
|
|
|
|
|
|
|
27 |
|
28 |
global FUNC_CALL
|
29 |
FUNC_CALL = 0
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY')
|
34 |
-
AWS_REGION_NAME = 'ap-south-1'
|
35 |
|
36 |
GENERAL_RSPONSE_TRIGGERS = ["I don't understand the question.", "I don't know", "Hello, my name is", "mentioned in the context provided"]
|
37 |
MESSAGES = [{"role": "system", "content": "You are a helpful assistant.."}]
|
38 |
|
39 |
-
|
40 |
-
CHAR_TALKING = f'<img src="{talking_html_base64}"></img>'
|
41 |
-
CHAR_THINKING = f'<img src="{thinking_html_base_64}"></img>'
|
42 |
AUDIO_HTML = ''
|
43 |
|
44 |
# Uncomment If this is your first Run:
|
45 |
-
import nltk
|
46 |
nltk.download('averaged_perceptron_tagger')
|
|
|
47 |
|
48 |
|
49 |
-
def
|
50 |
-
|
51 |
-
loader = DirectoryLoader('profiles', glob='**/*.txt')
|
52 |
-
docs = loader.load()
|
53 |
-
|
54 |
-
char_text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
55 |
-
doc_texts = char_text_splitter.split_documents(docs)
|
56 |
-
|
57 |
-
openAI_embeddings = OpenAIEmbeddings()
|
58 |
-
vStore = Chroma.from_documents(doc_texts, openAI_embeddings)
|
59 |
-
|
60 |
-
conv_model = RetrievalQA.from_chain_type(
|
61 |
-
llm=OpenAI(),
|
62 |
-
chain_type="stuff",
|
63 |
-
retriever=vStore.as_retriever(
|
64 |
-
search_kwargs={"k": 1}
|
65 |
-
)
|
66 |
-
)
|
67 |
-
voice_model = whisper.load_model("tiny")
|
68 |
-
|
69 |
-
return conv_model, voice_model
|
70 |
-
|
71 |
-
|
72 |
-
def text_to_speech_gen(answer):
|
73 |
-
|
74 |
-
polly = boto3.client('polly',
|
75 |
-
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
76 |
-
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
77 |
-
region_name=AWS_REGION_NAME)
|
78 |
-
|
79 |
-
response = polly.synthesize_speech(
|
80 |
-
Text=answer,
|
81 |
-
VoiceId='Matthew',
|
82 |
-
OutputFormat='mp3',
|
83 |
-
Engine = "neural")
|
84 |
-
|
85 |
-
audio_stream = response['AudioStream'].read()
|
86 |
-
audio_html = audio_to_html(audio_stream)
|
87 |
-
|
88 |
-
return audio_html
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
audio_html = f'<audio src="data:audio/mpeg;base64,{audio_base64}" controls autoplay></audio>'
|
96 |
|
97 |
-
|
|
|
|
|
98 |
|
99 |
|
100 |
def update_img():
|
@@ -102,17 +47,9 @@ def update_img():
|
|
102 |
FUNC_CALL += 1
|
103 |
|
104 |
if FUNC_CALL % 2== 0:
|
105 |
-
|
106 |
else:
|
107 |
-
|
108 |
-
|
109 |
-
return CHARACTER_STATE
|
110 |
-
|
111 |
-
|
112 |
-
def user(user_message, history):
|
113 |
-
return "", history + [[user_message, None]]
|
114 |
-
|
115 |
-
conv_model, voice_model = initialize_knowledge_base()
|
116 |
|
117 |
|
118 |
def get_response(history, audio_input):
|
@@ -120,6 +57,9 @@ def get_response(history, audio_input):
|
|
120 |
query_type = 'text'
|
121 |
question =history[-1][0]
|
122 |
|
|
|
|
|
|
|
123 |
if not question:
|
124 |
if audio_input:
|
125 |
query_type = 'audio'
|
@@ -130,8 +70,8 @@ def get_response(history, audio_input):
|
|
130 |
else:
|
131 |
return None, None
|
132 |
|
133 |
-
|
134 |
-
|
135 |
print('\nquery_type:', query_type)
|
136 |
print('\nquery_text:', question)
|
137 |
|
@@ -139,7 +79,7 @@ def get_response(history, audio_input):
|
|
139 |
question = 'hello'
|
140 |
|
141 |
answer = conv_model.run(question)
|
142 |
-
|
143 |
print('\ndocument_response:', answer)
|
144 |
|
145 |
for trigger in GENERAL_RSPONSE_TRIGGERS:
|
@@ -154,7 +94,7 @@ def get_response(history, audio_input):
|
|
154 |
)
|
155 |
answer = chat.choices[0].message.content
|
156 |
MESSAGES.append({"role": "assistant", "content": answer})
|
157 |
-
|
158 |
print('\ngeneral_response:', answer)
|
159 |
|
160 |
AUDIO_HTML = text_to_speech_gen(answer)
|
@@ -162,12 +102,14 @@ def get_response(history, audio_input):
|
|
162 |
|
163 |
return history, AUDIO_HTML
|
164 |
|
|
|
165 |
|
166 |
with gr.Blocks(title="Your Assistance Pal!") as demo:
|
|
|
167 |
with gr.Row():
|
168 |
output_html = gr.HTML(label="Felix's Voice", value=AUDIO_HTML)
|
169 |
output_html.visible = False
|
170 |
-
assistant_character = gr.HTML(label=None, value=
|
171 |
with gr.Column(scale=0.1):
|
172 |
chatbot = gr.Chatbot(label='Send a text or a voice input').style(height=285)
|
173 |
with gr.Row():
|
@@ -176,14 +118,16 @@ with gr.Blocks(title="Your Assistance Pal!") as demo:
|
|
176 |
audio_input = gr.Audio(source="microphone", type='filepath', show_label=False).style(container=False)
|
177 |
button = gr.Button(value="Send")
|
178 |
|
179 |
-
msg.submit(
|
180 |
).then(update_img, outputs=[assistant_character]
|
181 |
).then(get_response, [chatbot, audio_input], [chatbot, output_html]
|
182 |
).then(update_img, outputs=[assistant_character])
|
183 |
|
184 |
-
button.click(
|
185 |
).then(update_img, outputs=[assistant_character]
|
186 |
).then(get_response, [chatbot, audio_input], [chatbot, output_html]
|
187 |
).then(update_img, outputs=[assistant_character])
|
188 |
|
189 |
-
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import nltk
|
3 |
import openai
|
4 |
+
import time
|
|
|
|
|
5 |
import gradio as gr
|
6 |
+
from threading import Thread
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
from assets.char_poses_base64 import (
|
9 |
+
CHAR_IDLE_HTML, CHAR_THINKING_HTML, CHAR_TALKING_HTML)
|
10 |
|
11 |
+
from app_utils import (
|
12 |
+
get_chat_history, initialize_knowledge_base,
|
13 |
+
text_to_speech_gen, logging, buzz_user)
|
14 |
|
15 |
global FUNC_CALL
|
16 |
FUNC_CALL = 0
|
17 |
|
18 |
+
global BUZZ_TIMEOUT
|
19 |
+
BUZZ_TIMEOUT = 60
|
|
|
|
|
20 |
|
21 |
GENERAL_RSPONSE_TRIGGERS = ["I don't understand the question.", "I don't know", "Hello, my name is", "mentioned in the context provided"]
|
22 |
MESSAGES = [{"role": "system", "content": "You are a helpful assistant.."}]
|
23 |
|
24 |
+
LOGGER = logging.getLogger('voice_agent')
|
|
|
|
|
25 |
AUDIO_HTML = ''
|
26 |
|
27 |
# Uncomment If this is your first Run:
|
|
|
28 |
nltk.download('averaged_perceptron_tagger')
|
29 |
+
conv_model, voice_model = initialize_knowledge_base()
|
30 |
|
31 |
|
32 |
+
def idle_timer():
|
33 |
+
global BUZZ_TIMEOUT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
while True:
|
36 |
+
print('started countdown')
|
37 |
+
time.sleep(BUZZ_TIMEOUT)
|
38 |
+
buzz_user()
|
|
|
39 |
|
40 |
+
if BUZZ_TIMEOUT == 80:
|
41 |
+
time.sleep(BUZZ_TIMEOUT)
|
42 |
+
BUZZ_TIMEOUT = 60
|
43 |
|
44 |
|
45 |
def update_img():
|
|
|
47 |
FUNC_CALL += 1
|
48 |
|
49 |
if FUNC_CALL % 2== 0:
|
50 |
+
return CHAR_TALKING_HTML
|
51 |
else:
|
52 |
+
return CHAR_THINKING_HTML
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
|
55 |
def get_response(history, audio_input):
|
|
|
57 |
query_type = 'text'
|
58 |
question =history[-1][0]
|
59 |
|
60 |
+
global BUZZ_TIMEOUT
|
61 |
+
BUZZ_TIMEOUT = 80
|
62 |
+
|
63 |
if not question:
|
64 |
if audio_input:
|
65 |
query_type = 'audio'
|
|
|
70 |
else:
|
71 |
return None, None
|
72 |
|
73 |
+
LOGGER.info("\nquery_type: %s", query_type)
|
74 |
+
LOGGER.info("query_text: %s", question)
|
75 |
print('\nquery_type:', query_type)
|
76 |
print('\nquery_text:', question)
|
77 |
|
|
|
79 |
question = 'hello'
|
80 |
|
81 |
answer = conv_model.run(question)
|
82 |
+
LOGGER.info("\ndocument_response: %s", answer)
|
83 |
print('\ndocument_response:', answer)
|
84 |
|
85 |
for trigger in GENERAL_RSPONSE_TRIGGERS:
|
|
|
94 |
)
|
95 |
answer = chat.choices[0].message.content
|
96 |
MESSAGES.append({"role": "assistant", "content": answer})
|
97 |
+
LOGGER.info("general_response: %s", answer)
|
98 |
print('\ngeneral_response:', answer)
|
99 |
|
100 |
AUDIO_HTML = text_to_speech_gen(answer)
|
|
|
102 |
|
103 |
return history, AUDIO_HTML
|
104 |
|
105 |
+
buzz_usr_proc = Thread(target=idle_timer)
|
106 |
|
107 |
with gr.Blocks(title="Your Assistance Pal!") as demo:
|
108 |
+
|
109 |
with gr.Row():
|
110 |
output_html = gr.HTML(label="Felix's Voice", value=AUDIO_HTML)
|
111 |
output_html.visible = False
|
112 |
+
assistant_character = gr.HTML(label=None, value=CHAR_IDLE_HTML, show_label=False)
|
113 |
with gr.Column(scale=0.1):
|
114 |
chatbot = gr.Chatbot(label='Send a text or a voice input').style(height=285)
|
115 |
with gr.Row():
|
|
|
118 |
audio_input = gr.Audio(source="microphone", type='filepath', show_label=False).style(container=False)
|
119 |
button = gr.Button(value="Send")
|
120 |
|
121 |
+
msg.submit(get_chat_history, [msg, chatbot], [msg, chatbot]
|
122 |
).then(update_img, outputs=[assistant_character]
|
123 |
).then(get_response, [chatbot, audio_input], [chatbot, output_html]
|
124 |
).then(update_img, outputs=[assistant_character])
|
125 |
|
126 |
+
button.click(get_chat_history, [msg, chatbot], [msg, chatbot]
|
127 |
).then(update_img, outputs=[assistant_character]
|
128 |
).then(get_response, [chatbot, audio_input], [chatbot, output_html]
|
129 |
).then(update_img, outputs=[assistant_character])
|
130 |
|
131 |
+
buzz_usr_proc.start()
|
132 |
+
|
133 |
+
demo.launch(debug=False, favicon_path='assets/favicon.png', show_api=False, share=True)
|
app_utils.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import whisper
|
3 |
+
from io import BytesIO
|
4 |
+
import base64
|
5 |
+
import boto3
|
6 |
+
from pydub import AudioSegment
|
7 |
+
from pydub.playback import play
|
8 |
+
import logging
|
9 |
+
|
10 |
+
from langchain import OpenAI
|
11 |
+
from langchain.chains import RetrievalQA
|
12 |
+
from langchain.vectorstores import Chroma
|
13 |
+
from langchain.document_loaders import DirectoryLoader
|
14 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
15 |
+
from langchain.text_splitter import CharacterTextSplitter
|
16 |
+
|
17 |
+
|
18 |
+
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
19 |
+
AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID')
|
20 |
+
AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY')
|
21 |
+
AWS_REGION_NAME = 'ap-south-1'
|
22 |
+
|
23 |
+
|
24 |
+
logging.basicConfig(level="INFO",
|
25 |
+
filename='conversations.log',
|
26 |
+
filemode='a',
|
27 |
+
format='%(asctime)s %(message)s',
|
28 |
+
datefmt='%H:%M:%S')
|
29 |
+
|
30 |
+
|
31 |
+
def buzz_user():
|
32 |
+
input_prompt = AudioSegment.from_mp3('assets/timeout_audio.mp3')
|
33 |
+
play(input_prompt)
|
34 |
+
|
35 |
+
|
36 |
+
def initialize_knowledge_base():
|
37 |
+
|
38 |
+
loader = DirectoryLoader('profiles', glob='**/*.txt')
|
39 |
+
docs = loader.load()
|
40 |
+
|
41 |
+
char_text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
42 |
+
doc_texts = char_text_splitter.split_documents(docs)
|
43 |
+
|
44 |
+
openAI_embeddings = OpenAIEmbeddings()
|
45 |
+
vStore = Chroma.from_documents(doc_texts, openAI_embeddings)
|
46 |
+
|
47 |
+
conv_model = RetrievalQA.from_chain_type(
|
48 |
+
llm=OpenAI(),
|
49 |
+
chain_type="stuff",
|
50 |
+
retriever=vStore.as_retriever(
|
51 |
+
search_kwargs={"k": 1}
|
52 |
+
)
|
53 |
+
)
|
54 |
+
voice_model = whisper.load_model("tiny")
|
55 |
+
|
56 |
+
return conv_model, voice_model
|
57 |
+
|
58 |
+
|
59 |
+
def text_to_speech_gen(answer):
|
60 |
+
|
61 |
+
polly = boto3.client('polly',
|
62 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
63 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
64 |
+
region_name=AWS_REGION_NAME)
|
65 |
+
|
66 |
+
response = polly.synthesize_speech(
|
67 |
+
Text=answer,
|
68 |
+
VoiceId='Matthew',
|
69 |
+
OutputFormat='mp3',
|
70 |
+
Engine = "neural")
|
71 |
+
|
72 |
+
audio_stream = response['AudioStream'].read()
|
73 |
+
audio_html = audio_to_html(audio_stream)
|
74 |
+
|
75 |
+
return audio_html
|
76 |
+
|
77 |
+
|
78 |
+
def audio_to_html(audio_bytes):
|
79 |
+
audio_io = BytesIO(audio_bytes)
|
80 |
+
audio_io.seek(0)
|
81 |
+
audio_base64 = base64.b64encode(audio_io.read()).decode("utf-8")
|
82 |
+
audio_html = f'<audio src="data:audio/mpeg;base64,{audio_base64}" controls autoplay></audio>'
|
83 |
+
|
84 |
+
return audio_html
|
85 |
+
|
86 |
+
|
87 |
+
def get_chat_history(user_message, history):
|
88 |
+
return "", history + [[user_message, None]]
|
89 |
+
|
90 |
+
|
assets/char_poses_base64.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
assets/timeout_audio.mp3
ADDED
Binary file (21.9 kB). View file
|
|