Spaces:
Sleeping
Sleeping
Alejadro Sanchez-Giraldo
commited on
Commit
•
6e61bae
1
Parent(s):
0c868d2
add train model base code
Browse files- README.md +1 -1
- requirements.txt +2 -1
- training/train.py +41 -0
README.md
CHANGED
@@ -24,6 +24,6 @@ docker run -it -p 8501:8501 --platform=linux/amd64 \
|
|
24 |
|
25 |
### API
|
26 |
|
27 |
-
docker run -it -p
|
28 |
-e LAUNCHDARKLY_SDK_KEY="sdk-142d656c-d430-4f8c-b2f1-7275f2ec65ff" \
|
29 |
registry.hf.space/asgface-sentimentai:latest python api.py
|
|
|
24 |
|
25 |
### API
|
26 |
|
27 |
+
docker run -it -p 5001:5000 --platform=linux/amd64 \
|
28 |
-e LAUNCHDARKLY_SDK_KEY="sdk-142d656c-d430-4f8c-b2f1-7275f2ec65ff" \
|
29 |
registry.hf.space/asgface-sentimentai:latest python api.py
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ streamlit
|
|
2 |
transformers
|
3 |
launchdarkly-server-sdk
|
4 |
torch
|
5 |
-
Flask
|
|
|
|
2 |
transformers
|
3 |
launchdarkly-server-sdk
|
4 |
torch
|
5 |
+
Flask
|
6 |
+
datasets
|
training/train.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AlbertForSequenceClassification, AlbertTokenizer, Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
# Load a dataset (replace with your dataset)
|
5 |
+
dataset = load_dataset("text", data_files={"train": "path/to/train.txt", "test": "path/to/test.txt"})
|
6 |
+
|
7 |
+
# Preprocess the dataset (tokenization, formatting, etc.)
|
8 |
+
def preprocess_function(examples):
|
9 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True)
|
10 |
+
|
11 |
+
tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
|
12 |
+
tokenized_dataset = dataset.map(preprocess_function, batched=True)
|
13 |
+
|
14 |
+
# Load the model
|
15 |
+
model = AlbertForSequenceClassification.from_pretrained("albert-base-v2", num_labels=2) # Adjust num_labels as needed
|
16 |
+
|
17 |
+
# Define training arguments
|
18 |
+
training_args = TrainingArguments(
|
19 |
+
output_dir="./results",
|
20 |
+
num_train_epochs=3,
|
21 |
+
per_device_train_batch_size=8,
|
22 |
+
per_device_eval_batch_size=8,
|
23 |
+
warmup_steps=500,
|
24 |
+
weight_decay=0.01,
|
25 |
+
evaluate_during_training=True,
|
26 |
+
logging_dir="./logs",
|
27 |
+
)
|
28 |
+
|
29 |
+
# Initialize the Trainer
|
30 |
+
trainer = Trainer(
|
31 |
+
model=model,
|
32 |
+
args=training_args,
|
33 |
+
train_dataset=tokenized_dataset["train"],
|
34 |
+
eval_dataset=tokenized_dataset["test"]
|
35 |
+
)
|
36 |
+
|
37 |
+
# Train the model
|
38 |
+
trainer.train()
|
39 |
+
|
40 |
+
# Save the fine-tuned model
|
41 |
+
model.save_pretrained("path/to/save/model")
|