Spaces:
Sleeping
Sleeping
arslan-ahmed
commited on
Commit
•
8e71274
1
Parent(s):
4da8f94
separate functions py file
Browse files- app.py +54 -299
- ttyd_consts.py +50 -0
- ttyd_functions.py +261 -0
app.py
CHANGED
@@ -22,251 +22,22 @@ from urllib.parse import urlparse
|
|
22 |
import mimetypes
|
23 |
from pathlib import Path
|
24 |
import tiktoken
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
# Regex pattern to match a URL
|
28 |
-
HTTP_URL_PATTERN = r'^http[s]*://.+'
|
29 |
-
|
30 |
-
mimetypes.init()
|
31 |
-
media_files = tuple([x for x in mimetypes.types_map if mimetypes.types_map[x].split('/')[0] in ['image', 'video', 'audio']])
|
32 |
-
filter_strings = ['/email-protection#']
|
33 |
-
|
34 |
-
def get_hyperlinks(url):
|
35 |
-
try:
|
36 |
-
reqs = requests.get(url)
|
37 |
-
if not reqs.headers.get('Content-Type').startswith("text/html") or 400<=reqs.status_code<600:
|
38 |
-
return []
|
39 |
-
soup = BeautifulSoup(reqs.text, 'html.parser')
|
40 |
-
except Exception as e:
|
41 |
-
print(e)
|
42 |
-
return []
|
43 |
-
|
44 |
-
hyperlinks = []
|
45 |
-
for link in soup.find_all('a', href=True):
|
46 |
-
hyperlinks.append(link.get('href'))
|
47 |
-
|
48 |
-
return hyperlinks
|
49 |
-
|
50 |
-
|
51 |
-
# Function to get the hyperlinks from a URL that are within the same domain
|
52 |
-
def get_domain_hyperlinks(local_domain, url):
|
53 |
-
clean_links = []
|
54 |
-
for link in set(get_hyperlinks(url)):
|
55 |
-
clean_link = None
|
56 |
-
|
57 |
-
# If the link is a URL, check if it is within the same domain
|
58 |
-
if re.search(HTTP_URL_PATTERN, link):
|
59 |
-
# Parse the URL and check if the domain is the same
|
60 |
-
url_obj = urlparse(link)
|
61 |
-
if url_obj.netloc == local_domain:
|
62 |
-
clean_link = link
|
63 |
-
|
64 |
-
# If the link is not a URL, check if it is a relative link
|
65 |
-
else:
|
66 |
-
if link.startswith("/"):
|
67 |
-
link = link[1:]
|
68 |
-
elif link.startswith(("#", '?', 'mailto:')):
|
69 |
-
continue
|
70 |
-
|
71 |
-
if 'wp-content/uploads' in url:
|
72 |
-
clean_link = url+ "/" + link
|
73 |
-
else:
|
74 |
-
clean_link = "https://" + local_domain + "/" + link
|
75 |
-
|
76 |
-
if clean_link is not None:
|
77 |
-
clean_link = clean_link.strip().rstrip('/').replace('/../', '/')
|
78 |
-
|
79 |
-
if not any(x in clean_link for x in filter_strings):
|
80 |
-
clean_links.append(clean_link)
|
81 |
-
|
82 |
-
# Return the list of hyperlinks that are within the same domain
|
83 |
-
return list(set(clean_links))
|
84 |
-
|
85 |
-
# this function will get you a list of all the URLs from the base URL
|
86 |
-
def crawl(url, local_domain, prog=None):
|
87 |
-
# Create a queue to store the URLs to crawl
|
88 |
-
queue = deque([url])
|
89 |
-
|
90 |
-
# Create a set to store the URLs that have already been seen (no duplicates)
|
91 |
-
seen = set([url])
|
92 |
-
|
93 |
-
# While the queue is not empty, continue crawling
|
94 |
-
while queue:
|
95 |
-
# Get the next URL from the queue
|
96 |
-
url_pop = queue.pop()
|
97 |
-
# Get the hyperlinks from the URL and add them to the queue
|
98 |
-
for link in get_domain_hyperlinks(local_domain, url_pop):
|
99 |
-
if link not in seen:
|
100 |
-
queue.append(link)
|
101 |
-
seen.add(link)
|
102 |
-
if len(seen)>=100:
|
103 |
-
return seen
|
104 |
-
if prog is not None: prog(1, desc=f'Crawling: {url_pop}')
|
105 |
-
|
106 |
-
return seen
|
107 |
-
|
108 |
-
|
109 |
-
def ingestURL(documents, url, crawling=True, prog=None):
|
110 |
-
url = url.rstrip('/')
|
111 |
-
# Parse the URL and get the domain
|
112 |
-
local_domain = urlparse(url).netloc
|
113 |
-
if not (local_domain and url.startswith('http')):
|
114 |
-
return documents
|
115 |
-
print('Loading URL', url)
|
116 |
-
if crawling:
|
117 |
-
# crawl to get other webpages from this URL
|
118 |
-
if prog is not None: prog(0, desc=f'Crawling: {url}')
|
119 |
-
links = crawl(url, local_domain, prog)
|
120 |
-
if prog is not None: prog(1, desc=f'Crawling: {url}')
|
121 |
-
else:
|
122 |
-
links = set([url])
|
123 |
-
# separate pdf and other links
|
124 |
-
c_links, pdf_links = [], []
|
125 |
-
for x in links:
|
126 |
-
if x.endswith('.pdf'):
|
127 |
-
pdf_links.append(x)
|
128 |
-
elif not x.endswith(media_files):
|
129 |
-
c_links.append(x)
|
130 |
-
|
131 |
-
# Clean links loader using WebBaseLoader
|
132 |
-
if prog is not None: prog(0.5, desc=f'Ingesting: {url}')
|
133 |
-
if c_links:
|
134 |
-
loader = WebBaseLoader(list(c_links))
|
135 |
-
documents.extend(loader.load())
|
136 |
-
|
137 |
-
# remote PDFs loader
|
138 |
-
for pdf_link in list(pdf_links):
|
139 |
-
loader = PyMuPDFLoader(pdf_link)
|
140 |
-
doc = loader.load()
|
141 |
-
for x in doc:
|
142 |
-
x.metadata['source'] = loader.source
|
143 |
-
documents.extend(doc)
|
144 |
-
|
145 |
-
return documents
|
146 |
-
|
147 |
-
def ingestFiles(documents, files_list, prog=None):
|
148 |
-
for fPath in files_list:
|
149 |
-
doc = None
|
150 |
-
if fPath.endswith('.pdf'):
|
151 |
-
doc = PyMuPDFLoader(fPath).load()
|
152 |
-
elif fPath.endswith('.txt'):
|
153 |
-
doc = TextLoader(fPath).load()
|
154 |
-
elif fPath.endswith(('.doc', 'docx')):
|
155 |
-
doc = Docx2txtLoader(fPath).load()
|
156 |
-
elif 'WhatsApp Chat with' in fPath and fPath.endswith('.csv'):
|
157 |
-
doc = WhatsAppChatLoader(fPath).load()
|
158 |
-
else:
|
159 |
-
pass
|
160 |
-
|
161 |
-
if doc is not None and doc[0].page_content:
|
162 |
-
if prog is not None: prog(1, desc='Loaded file: '+fPath.rsplit('/')[0])
|
163 |
-
print('Loaded file:', fPath)
|
164 |
-
documents.extend(doc)
|
165 |
-
return documents
|
166 |
-
|
167 |
-
|
168 |
-
def data_ingestion(inputDir=None, file_list=[], waDir=None, url_list=[], prog=None):
|
169 |
-
documents = []
|
170 |
-
# Ingestion from Input Directory
|
171 |
-
if inputDir is not None:
|
172 |
-
files = [str(x) for x in Path(inputDir).glob('**/*')]
|
173 |
-
documents = ingestFiles(documents, files)
|
174 |
-
if file_list:
|
175 |
-
documents = ingestFiles(documents, file_list, prog)
|
176 |
-
# Ingestion of whatsapp chats - Convert Whatsapp TXT files to CSV using https://whatstk.streamlit.app/
|
177 |
-
if waDir is not None:
|
178 |
-
for fPath in [str(x) for x in Path(waDir).glob('**/*.csv')]:
|
179 |
-
waDoc = WhatsAppChatLoader(fPath).load()
|
180 |
-
if waDoc[0].page_content:
|
181 |
-
print('Loaded whatsapp file:', fPath)
|
182 |
-
documents.extend(waDoc)
|
183 |
-
# Ingestion from URLs - also try https://python.langchain.com/docs/integrations/document_loaders/recursive_url_loader
|
184 |
-
if url_list:
|
185 |
-
for url in url_list:
|
186 |
-
documents = ingestURL(documents, url, prog=prog)
|
187 |
-
|
188 |
-
|
189 |
-
# Cleanup documents
|
190 |
-
for x in documents:
|
191 |
-
if 'WhatsApp Chat with ' not in x.metadata['source']:
|
192 |
-
x.page_content = x.page_content.strip().replace('\n', ' ').replace('\\n', ' ').replace(' ', ' ')
|
193 |
-
|
194 |
-
print(f"Total number of documents: {len(documents)}")
|
195 |
-
return documents
|
196 |
-
|
197 |
-
|
198 |
-
def split_docs(documents):
|
199 |
-
# Splitting and Chunks
|
200 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2500, chunk_overlap=250) # default chunk size of 4000 makes around 1k tokens per doc. with k=4, this means 4k tokens input to LLM.
|
201 |
-
docs = text_splitter.split_documents(documents)
|
202 |
-
return docs
|
203 |
-
|
204 |
-
# used for Hardcoded documents only - not uploaded by user
|
205 |
-
def getVectorStore(openApiKey, documents, chromaClient=None):
|
206 |
-
docs = split_docs(documents)
|
207 |
-
# Embeddings
|
208 |
-
embeddings = OpenAIEmbeddings(openai_api_key=openApiKey)
|
209 |
-
# create chroma client if doesnt exist
|
210 |
-
if chromaClient is None:
|
211 |
-
chromaClient = Chroma(embedding_function=embeddings)
|
212 |
-
# clear chroma client before adding new docs
|
213 |
-
if chromaClient._collection.count()>0:
|
214 |
-
chromaClient.delete(chromaClient.get()['ids'])
|
215 |
-
# add new docs to chroma client
|
216 |
-
chromaClient.add_documents(docs)
|
217 |
-
print('vectorstore count:',chromaClient._collection.count(), 'at', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
|
218 |
-
|
219 |
-
return chromaClient
|
220 |
-
|
221 |
-
|
222 |
-
def getSourcesFromMetadata(metadata, sourceOnly=True, sepFileUrl=True):
|
223 |
-
# metadata: list of metadata dict from all documents
|
224 |
-
setSrc = set()
|
225 |
-
for x in metadata:
|
226 |
-
metadataText = '' # we need to convert each metadata dict into a string format. This string will be added to a set
|
227 |
-
if x is not None:
|
228 |
-
# extract source first, and then extract all other items
|
229 |
-
source = x['source']
|
230 |
-
source = source.rsplit('/',1)[-1] if 'http' not in source else source
|
231 |
-
notSource = []
|
232 |
-
for k,v in x.items():
|
233 |
-
if v is not None and k!='source' and k in ['page', 'title']:
|
234 |
-
notSource.extend([f"{k}: {v}"])
|
235 |
-
metadataText = ', '.join([f'source: {source}'] + notSource) if sourceOnly==False else source
|
236 |
-
setSrc.add(metadataText)
|
237 |
-
|
238 |
-
if sepFileUrl:
|
239 |
-
src_files = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted([x for x in setSrc if 'http' not in x], key=str.casefold))]))
|
240 |
-
src_urls = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted([x for x in setSrc if 'http' in x], key=str.casefold))]))
|
241 |
-
|
242 |
-
src_files = 'Files:\n'+src_files if src_files else ''
|
243 |
-
src_urls = 'URLs:\n'+src_urls if src_urls else ''
|
244 |
-
newLineSep = '\n\n' if src_files and src_urls else ''
|
245 |
-
|
246 |
-
return src_files + newLineSep + src_urls , len(setSrc)
|
247 |
-
else:
|
248 |
-
src_docs = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted(list(setSrc), key=str.casefold))]))
|
249 |
-
return src_docs, len(setSrc)
|
250 |
-
|
251 |
-
def num_tokens_from_string(string, encoding_name = "cl100k_base"):
|
252 |
-
"""Returns the number of tokens in a text string."""
|
253 |
-
encoding = tiktoken.get_encoding(encoding_name)
|
254 |
-
num_tokens = len(encoding.encode(string))
|
255 |
-
return num_tokens
|
256 |
###############################################################################################
|
257 |
|
258 |
-
#
|
|
|
259 |
|
260 |
-
#
|
261 |
-
|
262 |
-
# # Data Ingestion - take list of documents
|
263 |
-
# documents = data_ingestion(inputDir= '../reports/',waDir = '../whatsapp-exports/')
|
264 |
-
# full_text = ''.join([x.page_content for x in documents])
|
265 |
-
# print('Full Text Len:', len(full_text), 'Num tokens:', num_tokens_from_string(full_text))
|
266 |
-
|
267 |
-
# # Embeddings
|
268 |
-
# vectorstore = getVectorStore(os.getenv("OPENAI_API_KEY"), documents)
|
269 |
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
|
272 |
###############################################################################################
|
@@ -279,7 +50,7 @@ def generateExamples(api_key_st, vsDict_st):
|
|
279 |
qa_chain = RetrievalQA.from_llm(llm=ChatOpenAI(openai_api_key=api_key_st, temperature=0),
|
280 |
retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": 4}))
|
281 |
|
282 |
-
result = qa_chain({'query':
|
283 |
answer = result['result'].strip('\n')
|
284 |
grSamples = [[]]
|
285 |
if answer.startswith('1. '):
|
@@ -291,24 +62,24 @@ def generateExamples(api_key_st, vsDict_st):
|
|
291 |
|
292 |
# initialize chatbot function sets the QA Chain, and also sets/updates any other components to start chatting. updateQaChain function only updates QA chain and will be called whenever Adv Settings are updated.
|
293 |
def initializeChatbot(temp, k, modelName, stdlQs, api_key_st, vsDict_st, progress=gr.Progress()):
|
294 |
-
progress(0.1,
|
295 |
qa_chain_st = updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st)
|
296 |
-
progress(0.5,
|
297 |
#generate welcome message
|
298 |
-
result = qa_chain_st({'question':
|
|
|
299 |
# exSamples = generateExamples(api_key_st, vsDict_st)
|
300 |
# exSamples_vis = True if exSamples[0] else False
|
301 |
-
|
302 |
-
return qa_chain_st, btn.update(interactive=True), initChatbot_btn.update('Chatbot ready. Now visit the chatbot Tab.', interactive=False)\
|
303 |
-
, status_tb.update(), gr.Tabs.update(selected='cb'), chatbot.update(value=[('', result['answer'])])
|
304 |
|
|
|
|
|
305 |
|
306 |
|
307 |
def setApiKey(api_key):
|
308 |
if api_key==os.getenv("TEMP_PWD") and os.getenv("OPENAI_API_KEY") is not None:
|
309 |
api_key=os.getenv("OPENAI_API_KEY")
|
310 |
try:
|
311 |
-
api_key='Null' if api_key is None or api_key=='' else api_key
|
312 |
openai.Model.list(api_key=api_key) # test the API key
|
313 |
api_key_st = api_key
|
314 |
|
@@ -317,50 +88,45 @@ def setApiKey(api_key):
|
|
317 |
return aKey_tb.update(str(e), type='text'), *[x.update() for x in [aKey_btn, api_key_state]]
|
318 |
|
319 |
# convert user uploaded data to vectorstore
|
320 |
-
def
|
321 |
opComponents = [data_ingest_btn, upload_fb, urls_tb]
|
|
|
322 |
file_paths = []
|
323 |
documents = []
|
324 |
if userFiles is not None:
|
325 |
if not isinstance(userFiles, list): userFiles = [userFiles]
|
326 |
file_paths = [file.name for file in userFiles]
|
327 |
userUrls = [x.strip() for x in userUrls.split(",")] if userUrls else []
|
|
|
328 |
documents = data_ingestion(file_list=file_paths, url_list=userUrls, prog=progress)
|
329 |
if documents:
|
330 |
for file in file_paths:
|
331 |
os.remove(file)
|
332 |
else:
|
333 |
return {}, '', *[x.update() for x in opComponents]
|
334 |
-
|
335 |
# Splitting and Chunks
|
336 |
docs = split_docs(documents)
|
337 |
# Embeddings
|
338 |
try:
|
339 |
-
api_key_st='Null' if api_key_st is None or api_key_st=='' else api_key_st
|
340 |
openai.Model.list(api_key=api_key_st) # test the API key
|
341 |
embeddings = OpenAIEmbeddings(openai_api_key=api_key_st)
|
342 |
except Exception as e:
|
343 |
return {}, str(e), *[x.update() for x in opComponents]
|
344 |
|
345 |
progress(0.5, 'Creating Vector Database')
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
if vsDict_st['chromaClient']._collection.count()>0:
|
352 |
-
vsDict_st['chromaClient'].delete(vsDict_st['chromaClient'].get()['ids'])
|
353 |
-
# add new docs to chroma client
|
354 |
-
vsDict_st['chromaClient'].add_documents(docs)
|
355 |
-
print('vectorstore count:',vsDict_st['chromaClient']._collection.count(), 'at', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
|
356 |
-
|
357 |
-
op_docs_str = getSourcesFromMetadata(vsDict_st['chromaClient'].get()['metadatas'])
|
358 |
-
op_docs_str = str(op_docs_str[1]) + ' document(s) successfully loaded in vector store.'+'\n\n' + op_docs_str[0]
|
359 |
progress(1, 'Data loaded')
|
360 |
-
return vsDict_st,
|
361 |
|
362 |
# just update the QA Chain, no updates to any UI
|
363 |
def updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st):
|
|
|
|
|
364 |
modelName = modelName.split('(')[0].strip() # so we can provide any info in brackets
|
365 |
# check if the input model is chat model or legacy model
|
366 |
try:
|
@@ -417,16 +183,7 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue='orange', secondary_hue='gray
|
|
417 |
|
418 |
|
419 |
# Setup the Gradio Layout
|
420 |
-
gr.Markdown(
|
421 |
-
"""
|
422 |
-
## Chat with your documents and websites<br>
|
423 |
-
Step 1) Enter your OpenAI API Key, and click Submit.<br>
|
424 |
-
Step 2) Upload your documents and/or enter URLs, then click Load Data.<br>
|
425 |
-
Step 3) Once data is loaded, click Initialize Chatbot (at the bottom of the page) to start talking to your data.<br>
|
426 |
-
|
427 |
-
Your documents should be semantically similar (covering related topics or having the similar meaning) in order to get the best results.
|
428 |
-
You may also play around with Advanced Settings, like changing the model name and parameters.
|
429 |
-
""")
|
430 |
with gr.Tabs() as tabs:
|
431 |
with gr.Tab('Initialization', id='init'):
|
432 |
with gr.Row():
|
@@ -435,14 +192,14 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue='orange', secondary_hue='gray
|
|
435 |
, info='You can find OpenAI API key at https://platform.openai.com/account/api-keys'\
|
436 |
, placeholder='Enter your API key here and hit enter to begin chatting')
|
437 |
aKey_btn = gr.Button("Submit API Key")
|
438 |
-
with gr.Row():
|
439 |
upload_fb = gr.Files(scale=5, label="Upload (multiple) Files - pdf/txt/docx supported", file_types=['.doc', '.docx', 'text', '.pdf', '.csv'])
|
440 |
urls_tb = gr.Textbox(scale=5, label="Enter URLs starting with https (comma separated)"\
|
441 |
-
, info=
|
442 |
-
, placeholder=
|
443 |
data_ingest_btn = gr.Button("Load Data")
|
444 |
-
status_tb = gr.TextArea(label='Status bar', show_label=False)
|
445 |
-
initChatbot_btn = gr.Button("Initialize Chatbot")
|
446 |
|
447 |
with gr.Tab('Chatbot', id='cb'):
|
448 |
with gr.Row():
|
@@ -450,24 +207,22 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue='orange', secondary_hue='gray
|
|
450 |
srcDocs = gr.TextArea(label="References")
|
451 |
msg = gr.Textbox(label="User Input",placeholder="Type your questions here")
|
452 |
with gr.Row():
|
453 |
-
btn = gr.Button("Send Message", interactive=False)
|
454 |
clear = gr.ClearButton(components=[msg, chatbot, srcDocs], value="Clear chat history")
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
with gr.
|
459 |
-
with gr.
|
460 |
temp_sld = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label="Temperature", info='Sampling temperature to use when calling LLM. Defaults to 0.7')
|
461 |
k_sld = gr.Slider(minimum=1, maximum=10, step=1, value=4, label="K", info='Number of relavant documents to return from Vector Store. Defaults to 4')
|
462 |
model_dd = gr.Dropdown(label='Model Name'\
|
463 |
-
, choices=
|
464 |
-
, value=
|
465 |
-
, info=
|
466 |
-
stdlQs_rb = gr.Radio(label='Standalone Question', info=
|
467 |
-
|
468 |
-
, choices=
|
469 |
-
, 'Retrieve relavant docs using standalone question, send original question to LLM'\
|
470 |
-
, 'Retrieve relavant docs using standalone question, send standalone question to LLM'])
|
471 |
|
472 |
### Setup the Gradio Event Listeners
|
473 |
|
@@ -477,17 +232,17 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue='orange', secondary_hue='gray
|
|
477 |
aKey_tb.submit(**aKey_btn_args)
|
478 |
|
479 |
# Data Ingest Button
|
480 |
-
data_ingest_btn.click(
|
481 |
|
482 |
# Adv Settings
|
483 |
advSet_args = {'fn':updateQaChain, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state]}
|
484 |
-
temp_sld.
|
485 |
-
k_sld.
|
486 |
model_dd.change(**advSet_args)
|
487 |
stdlQs_rb.change(**advSet_args)
|
488 |
-
|
489 |
# Initialize button
|
490 |
-
initChatbot_btn.click(initializeChatbot, [temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], [qa_state, btn, initChatbot_btn,
|
491 |
|
492 |
# Chatbot submit button
|
493 |
chat_btn_args = {'fn':respond, 'inputs':[msg, chatbot, qa_state], 'outputs':[msg, chatbot, srcDocs, btn]}
|
|
|
22 |
import mimetypes
|
23 |
from pathlib import Path
|
24 |
import tiktoken
|
25 |
+
from ttyd_functions import *
|
26 |
+
from ttyd_consts import *
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
###############################################################################################
|
29 |
|
30 |
+
# You want to hardcode Documents or take it from UI?
|
31 |
+
UiAddData = False
|
32 |
|
33 |
+
if UiAddData: # take input data from UI
|
34 |
+
md_title = md_title_general
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
else: # provide paths to the data
|
37 |
+
url_list = ['https://www.nustianusa.org', 'https://www.nustian.ca']
|
38 |
+
# local vector store as opposed to gradio state vector store
|
39 |
+
vsDict_hard = localData_vecStore(os.getenv("OPENAI_API_KEY"), url_list=url_list)
|
40 |
+
md_title = md_title_nustian
|
41 |
|
42 |
|
43 |
###############################################################################################
|
|
|
50 |
qa_chain = RetrievalQA.from_llm(llm=ChatOpenAI(openai_api_key=api_key_st, temperature=0),
|
51 |
retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": 4}))
|
52 |
|
53 |
+
result = qa_chain({'query': exp_query})
|
54 |
answer = result['result'].strip('\n')
|
55 |
grSamples = [[]]
|
56 |
if answer.startswith('1. '):
|
|
|
62 |
|
63 |
# initialize chatbot function sets the QA Chain, and also sets/updates any other components to start chatting. updateQaChain function only updates QA chain and will be called whenever Adv Settings are updated.
|
64 |
def initializeChatbot(temp, k, modelName, stdlQs, api_key_st, vsDict_st, progress=gr.Progress()):
|
65 |
+
progress(0.1, waitText_initialize)
|
66 |
qa_chain_st = updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st)
|
67 |
+
progress(0.5, waitText_initialize)
|
68 |
#generate welcome message
|
69 |
+
result = qa_chain_st({'question': initialize_prompt, 'chat_history':[]})
|
70 |
+
|
71 |
# exSamples = generateExamples(api_key_st, vsDict_st)
|
72 |
# exSamples_vis = True if exSamples[0] else False
|
|
|
|
|
|
|
73 |
|
74 |
+
return qa_chain_st, btn.update(interactive=True), initChatbot_btn.update('Chatbot ready. Now visit the chatbot Tab.', interactive=False)\
|
75 |
+
, aKey_tb.update(), gr.Tabs.update(selected='cb'), chatbot.update(value=[('', result['answer'])])
|
76 |
|
77 |
|
78 |
def setApiKey(api_key):
|
79 |
if api_key==os.getenv("TEMP_PWD") and os.getenv("OPENAI_API_KEY") is not None:
|
80 |
api_key=os.getenv("OPENAI_API_KEY")
|
81 |
try:
|
82 |
+
# api_key='Null' if api_key is None or api_key=='' else api_key
|
83 |
openai.Model.list(api_key=api_key) # test the API key
|
84 |
api_key_st = api_key
|
85 |
|
|
|
88 |
return aKey_tb.update(str(e), type='text'), *[x.update() for x in [aKey_btn, api_key_state]]
|
89 |
|
90 |
# convert user uploaded data to vectorstore
|
91 |
+
def uiData_vecStore(userFiles, userUrls, api_key_st, vsDict_st={}, progress=gr.Progress()):
|
92 |
opComponents = [data_ingest_btn, upload_fb, urls_tb]
|
93 |
+
# parse user data
|
94 |
file_paths = []
|
95 |
documents = []
|
96 |
if userFiles is not None:
|
97 |
if not isinstance(userFiles, list): userFiles = [userFiles]
|
98 |
file_paths = [file.name for file in userFiles]
|
99 |
userUrls = [x.strip() for x in userUrls.split(",")] if userUrls else []
|
100 |
+
#create documents
|
101 |
documents = data_ingestion(file_list=file_paths, url_list=userUrls, prog=progress)
|
102 |
if documents:
|
103 |
for file in file_paths:
|
104 |
os.remove(file)
|
105 |
else:
|
106 |
return {}, '', *[x.update() for x in opComponents]
|
|
|
107 |
# Splitting and Chunks
|
108 |
docs = split_docs(documents)
|
109 |
# Embeddings
|
110 |
try:
|
111 |
+
# api_key_st='Null' if api_key_st is None or api_key_st=='' else api_key_st
|
112 |
openai.Model.list(api_key=api_key_st) # test the API key
|
113 |
embeddings = OpenAIEmbeddings(openai_api_key=api_key_st)
|
114 |
except Exception as e:
|
115 |
return {}, str(e), *[x.update() for x in opComponents]
|
116 |
|
117 |
progress(0.5, 'Creating Vector Database')
|
118 |
+
vsDict_st = getVsDict(embeddings, docs, vsDict_st)
|
119 |
+
# get sources from metadata
|
120 |
+
src_str = getSourcesFromMetadata(vsDict_st['chromaClient'].get()['metadatas'])
|
121 |
+
src_str = str(src_str[1]) + ' source document(s) successfully loaded in vector store.'+'\n\n' + src_str[0]
|
122 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
progress(1, 'Data loaded')
|
124 |
+
return vsDict_st, src_str, *[x.update(interactive=False) for x in [data_ingest_btn, upload_fb]], urls_tb.update(interactive=False, placeholder='')
|
125 |
|
126 |
# just update the QA Chain, no updates to any UI
|
127 |
def updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st):
|
128 |
+
# if we are not adding data from ui, then use vsDict_hard as vectorstore
|
129 |
+
if vsDict_st=={} and not UiAddData: vsDict_st=vsDict_hard
|
130 |
modelName = modelName.split('(')[0].strip() # so we can provide any info in brackets
|
131 |
# check if the input model is chat model or legacy model
|
132 |
try:
|
|
|
183 |
|
184 |
|
185 |
# Setup the Gradio Layout
|
186 |
+
gr.Markdown(md_title)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
with gr.Tabs() as tabs:
|
188 |
with gr.Tab('Initialization', id='init'):
|
189 |
with gr.Row():
|
|
|
192 |
, info='You can find OpenAI API key at https://platform.openai.com/account/api-keys'\
|
193 |
, placeholder='Enter your API key here and hit enter to begin chatting')
|
194 |
aKey_btn = gr.Button("Submit API Key")
|
195 |
+
with gr.Row(visible=UiAddData):
|
196 |
upload_fb = gr.Files(scale=5, label="Upload (multiple) Files - pdf/txt/docx supported", file_types=['.doc', '.docx', 'text', '.pdf', '.csv'])
|
197 |
urls_tb = gr.Textbox(scale=5, label="Enter URLs starting with https (comma separated)"\
|
198 |
+
, info=url_tb_info\
|
199 |
+
, placeholder=url_tb_ph)
|
200 |
data_ingest_btn = gr.Button("Load Data")
|
201 |
+
status_tb = gr.TextArea(label='Status bar', show_label=False, visible=UiAddData)
|
202 |
+
initChatbot_btn = gr.Button("Initialize Chatbot", variant="primary")
|
203 |
|
204 |
with gr.Tab('Chatbot', id='cb'):
|
205 |
with gr.Row():
|
|
|
207 |
srcDocs = gr.TextArea(label="References")
|
208 |
msg = gr.Textbox(label="User Input",placeholder="Type your questions here")
|
209 |
with gr.Row():
|
210 |
+
btn = gr.Button("Send Message", interactive=False, variant="primary")
|
211 |
clear = gr.ClearButton(components=[msg, chatbot, srcDocs], value="Clear chat history")
|
212 |
+
# exp_comp = gr.Dataset(scale=0.7, samples=[['123'],['456'], ['123'],['456'],['456']], components=[msg], label='Examples (auto generated by LLM)', visible=False)
|
213 |
+
# gr.Examples(examples=exps, inputs=msg)
|
214 |
+
with gr.Accordion("Advance Settings - click to expand", open=False):
|
215 |
+
with gr.Row():
|
216 |
+
with gr.Column():
|
217 |
temp_sld = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label="Temperature", info='Sampling temperature to use when calling LLM. Defaults to 0.7')
|
218 |
k_sld = gr.Slider(minimum=1, maximum=10, step=1, value=4, label="K", info='Number of relavant documents to return from Vector Store. Defaults to 4')
|
219 |
model_dd = gr.Dropdown(label='Model Name'\
|
220 |
+
, choices=model_dd_choices\
|
221 |
+
, value=model_dd_choices[0], allow_custom_value=True\
|
222 |
+
, info=model_dd_info)
|
223 |
+
stdlQs_rb = gr.Radio(label='Standalone Question', info=stdlQs_rb_info\
|
224 |
+
, type='index', value=stdlQs_rb_choices[1]\
|
225 |
+
, choices=stdlQs_rb_choices)
|
|
|
|
|
226 |
|
227 |
### Setup the Gradio Event Listeners
|
228 |
|
|
|
232 |
aKey_tb.submit(**aKey_btn_args)
|
233 |
|
234 |
# Data Ingest Button
|
235 |
+
data_ingest_btn.click(uiData_vecStore, [upload_fb, urls_tb, api_key_state, chromaVS_state], [chromaVS_state, status_tb, data_ingest_btn, upload_fb, urls_tb])
|
236 |
|
237 |
# Adv Settings
|
238 |
advSet_args = {'fn':updateQaChain, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state]}
|
239 |
+
temp_sld.release(**advSet_args)
|
240 |
+
k_sld.release(**advSet_args)
|
241 |
model_dd.change(**advSet_args)
|
242 |
stdlQs_rb.change(**advSet_args)
|
243 |
+
|
244 |
# Initialize button
|
245 |
+
initChatbot_btn.click(initializeChatbot, [temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], [qa_state, btn, initChatbot_btn, aKey_tb, tabs, chatbot])
|
246 |
|
247 |
# Chatbot submit button
|
248 |
chat_btn_args = {'fn':respond, 'inputs':[msg, chatbot, qa_state], 'outputs':[msg, chatbot, srcDocs, btn]}
|
ttyd_consts.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exp_query = 'Generate top 5 questions that I can ask about this data. Questions should be very precise and short, ideally less than 10 words.'
|
2 |
+
|
3 |
+
waitText_initialize = 'Preparing the documents, please wait...'
|
4 |
+
|
5 |
+
initialize_prompt = 'Write a short welcome message to the user. Describe the documents with a brief overview including short summary or any highlights.\
|
6 |
+
If these documents are about a person, mention his name instead of using pronouns. After describing the overview, you should mention top 3 example questions that the user can ask about this data.\
|
7 |
+
Your response should be short and precise. Format of your response should be Description:\n{description} \n\n Example Questions:\n{examples}'
|
8 |
+
|
9 |
+
nustian_exps = ['Tell me about NUSTIAN',
|
10 |
+
'Who is the NUSTIAN regional lead for Silicon Valley?',
|
11 |
+
'Tell me details about NUSTIAN coaching program.',
|
12 |
+
'How can we donate to NUSTIAN fundraiser?',
|
13 |
+
'Who is the president of NUSTIAN?',
|
14 |
+
"What are top five missions of NUSTIAN?",
|
15 |
+
]
|
16 |
+
|
17 |
+
stdlQs_rb_info = 'Standalone question is a new rephrased question generated based on your original question and chat history'
|
18 |
+
|
19 |
+
stdlQs_rb_choices = ['Retrieve relavant docs using original question, send original question to LLM (Chat history not considered)'\
|
20 |
+
, 'Retrieve relavant docs using standalone question, send original question to LLM'\
|
21 |
+
, 'Retrieve relavant docs using standalone question, send standalone question to LLM']
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
model_dd_info = 'You can also input any OpenAI model name, compatible with /v1/completions or /v1/chat/completions endpoint. Details: https://platform.openai.com/docs/models/'
|
26 |
+
|
27 |
+
model_dd_choices = ['gpt-3.5-turbo', 'gpt-3.5-turbo-16k', 'gpt-4', 'text-davinci-003 (Legacy)', 'text-curie-001 (Legacy)', 'babbage-002']
|
28 |
+
|
29 |
+
url_tb_info = 'Upto 100 domain webpages will be crawled for each URL. You can also enter online PDF files.'
|
30 |
+
|
31 |
+
url_tb_ph = 'https://example.com, https://another.com, https://anyremotedocument.pdf'
|
32 |
+
|
33 |
+
|
34 |
+
md_title_general = """
|
35 |
+
## Chat with your documents and websites<br>
|
36 |
+
Step 1) Enter your OpenAI API Key, and click Submit.<br>
|
37 |
+
Step 2) Upload your documents and/or enter URLs, then click Load Data.<br>
|
38 |
+
Step 3) Once data is loaded, click Initialize Chatbot (at the bottom of the page) to start talking to your data.<br>
|
39 |
+
|
40 |
+
Your documents should be semantically similar (covering related topics or having the similar meaning) in order to get the best results.
|
41 |
+
You may also play around with Advanced Settings, like changing the model name and parameters.
|
42 |
+
"""
|
43 |
+
|
44 |
+
md_title_nustian = """
|
45 |
+
## Chat with NUSTIAN website<br>
|
46 |
+
Step 1) Submit your OpenAI API Key.<br>
|
47 |
+
Step 2) Click Initialize Chatbot to start sending messages.<br>
|
48 |
+
|
49 |
+
You may also play around with Advanced Settings, like changing the model name and parameters.
|
50 |
+
"""
|
ttyd_functions.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import datetime
|
3 |
+
import openai
|
4 |
+
import uuid
|
5 |
+
import gradio as gr
|
6 |
+
from langchain.embeddings import OpenAIEmbeddings
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
|
9 |
+
from langchain.chains import ConversationalRetrievalChain
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
+
|
12 |
+
import os
|
13 |
+
from langchain.chat_models import ChatOpenAI
|
14 |
+
from langchain import OpenAI
|
15 |
+
from langchain.document_loaders import WebBaseLoader, TextLoader, Docx2txtLoader, PyMuPDFLoader
|
16 |
+
from whatsapp_chat_custom import WhatsAppChatLoader # use this instead of from langchain.document_loaders import WhatsAppChatLoader
|
17 |
+
|
18 |
+
from collections import deque
|
19 |
+
import re
|
20 |
+
from bs4 import BeautifulSoup
|
21 |
+
import requests
|
22 |
+
from urllib.parse import urlparse
|
23 |
+
import mimetypes
|
24 |
+
from pathlib import Path
|
25 |
+
import tiktoken
|
26 |
+
|
27 |
+
# Regex pattern to match a URL
|
28 |
+
HTTP_URL_PATTERN = r'^http[s]*://.+'
|
29 |
+
|
30 |
+
mimetypes.init()
|
31 |
+
media_files = tuple([x for x in mimetypes.types_map if mimetypes.types_map[x].split('/')[0] in ['image', 'video', 'audio']])
|
32 |
+
filter_strings = ['/email-protection#']
|
33 |
+
|
34 |
+
def get_hyperlinks(url):
|
35 |
+
try:
|
36 |
+
reqs = requests.get(url)
|
37 |
+
if not reqs.headers.get('Content-Type').startswith("text/html") or 400<=reqs.status_code<600:
|
38 |
+
return []
|
39 |
+
soup = BeautifulSoup(reqs.text, 'html.parser')
|
40 |
+
except Exception as e:
|
41 |
+
print(e)
|
42 |
+
return []
|
43 |
+
|
44 |
+
hyperlinks = []
|
45 |
+
for link in soup.find_all('a', href=True):
|
46 |
+
hyperlinks.append(link.get('href'))
|
47 |
+
|
48 |
+
return hyperlinks
|
49 |
+
|
50 |
+
|
51 |
+
# Function to get the hyperlinks from a URL that are within the same domain
|
52 |
+
def get_domain_hyperlinks(local_domain, url):
|
53 |
+
clean_links = []
|
54 |
+
for link in set(get_hyperlinks(url)):
|
55 |
+
clean_link = None
|
56 |
+
|
57 |
+
# If the link is a URL, check if it is within the same domain
|
58 |
+
if re.search(HTTP_URL_PATTERN, link):
|
59 |
+
# Parse the URL and check if the domain is the same
|
60 |
+
url_obj = urlparse(link)
|
61 |
+
if url_obj.netloc == local_domain:
|
62 |
+
clean_link = link
|
63 |
+
|
64 |
+
# If the link is not a URL, check if it is a relative link
|
65 |
+
else:
|
66 |
+
if link.startswith("/"):
|
67 |
+
link = link[1:]
|
68 |
+
elif link.startswith(("#", '?', 'mailto:')):
|
69 |
+
continue
|
70 |
+
|
71 |
+
if 'wp-content/uploads' in url:
|
72 |
+
clean_link = url+ "/" + link
|
73 |
+
else:
|
74 |
+
clean_link = "https://" + local_domain + "/" + link
|
75 |
+
|
76 |
+
if clean_link is not None:
|
77 |
+
clean_link = clean_link.strip().rstrip('/').replace('/../', '/')
|
78 |
+
|
79 |
+
if not any(x in clean_link for x in filter_strings):
|
80 |
+
clean_links.append(clean_link)
|
81 |
+
|
82 |
+
# Return the list of hyperlinks that are within the same domain
|
83 |
+
return list(set(clean_links))
|
84 |
+
|
85 |
+
# this function will get you a list of all the URLs from the base URL
|
86 |
+
def crawl(url, local_domain, prog=None):
|
87 |
+
# Create a queue to store the URLs to crawl
|
88 |
+
queue = deque([url])
|
89 |
+
|
90 |
+
# Create a set to store the URLs that have already been seen (no duplicates)
|
91 |
+
seen = set([url])
|
92 |
+
|
93 |
+
# While the queue is not empty, continue crawling
|
94 |
+
while queue:
|
95 |
+
# Get the next URL from the queue
|
96 |
+
url_pop = queue.pop()
|
97 |
+
# Get the hyperlinks from the URL and add them to the queue
|
98 |
+
for link in get_domain_hyperlinks(local_domain, url_pop):
|
99 |
+
if link not in seen:
|
100 |
+
queue.append(link)
|
101 |
+
seen.add(link)
|
102 |
+
if len(seen)>=100:
|
103 |
+
return seen
|
104 |
+
if prog is not None: prog(1, desc=f'Crawling: {url_pop}')
|
105 |
+
|
106 |
+
return seen
|
107 |
+
|
108 |
+
|
109 |
+
def ingestURL(documents, url, crawling=True, prog=None):
|
110 |
+
url = url.rstrip('/')
|
111 |
+
# Parse the URL and get the domain
|
112 |
+
local_domain = urlparse(url).netloc
|
113 |
+
if not (local_domain and url.startswith('http')):
|
114 |
+
return documents
|
115 |
+
print('Loading URL', url)
|
116 |
+
if crawling:
|
117 |
+
# crawl to get other webpages from this URL
|
118 |
+
if prog is not None: prog(0, desc=f'Crawling: {url}')
|
119 |
+
links = crawl(url, local_domain, prog)
|
120 |
+
if prog is not None: prog(1, desc=f'Crawling: {url}')
|
121 |
+
else:
|
122 |
+
links = set([url])
|
123 |
+
# separate pdf and other links
|
124 |
+
c_links, pdf_links = [], []
|
125 |
+
for x in links:
|
126 |
+
if x.endswith('.pdf'):
|
127 |
+
pdf_links.append(x)
|
128 |
+
elif not x.endswith(media_files):
|
129 |
+
c_links.append(x)
|
130 |
+
|
131 |
+
# Clean links loader using WebBaseLoader
|
132 |
+
if prog is not None: prog(0.5, desc=f'Ingesting: {url}')
|
133 |
+
if c_links:
|
134 |
+
loader = WebBaseLoader(list(c_links))
|
135 |
+
documents.extend(loader.load())
|
136 |
+
|
137 |
+
# remote PDFs loader
|
138 |
+
for pdf_link in list(pdf_links):
|
139 |
+
loader = PyMuPDFLoader(pdf_link)
|
140 |
+
doc = loader.load()
|
141 |
+
for x in doc:
|
142 |
+
x.metadata['source'] = loader.source
|
143 |
+
documents.extend(doc)
|
144 |
+
|
145 |
+
return documents
|
146 |
+
|
147 |
+
def ingestFiles(documents, files_list, prog=None):
|
148 |
+
for fPath in files_list:
|
149 |
+
doc = None
|
150 |
+
if fPath.endswith('.pdf'):
|
151 |
+
doc = PyMuPDFLoader(fPath).load()
|
152 |
+
elif fPath.endswith('.txt') and not 'WhatsApp Chat with' in fPath:
|
153 |
+
doc = TextLoader(fPath).load()
|
154 |
+
elif fPath.endswith(('.doc', 'docx')):
|
155 |
+
doc = Docx2txtLoader(fPath).load()
|
156 |
+
elif 'WhatsApp Chat with' in fPath and fPath.endswith('.csv'): # Convert Whatsapp TXT files to CSV using https://whatstk.streamlit.app/
|
157 |
+
doc = WhatsAppChatLoader(fPath).load()
|
158 |
+
else:
|
159 |
+
pass
|
160 |
+
|
161 |
+
if doc is not None and doc[0].page_content:
|
162 |
+
if prog is not None: prog(1, desc='Loaded file: '+fPath.rsplit('/')[0])
|
163 |
+
print('Loaded file:', fPath)
|
164 |
+
documents.extend(doc)
|
165 |
+
return documents
|
166 |
+
|
167 |
+
|
168 |
+
def data_ingestion(inputDir=None, file_list=[], url_list=[], prog=None):
|
169 |
+
documents = []
|
170 |
+
# Ingestion from Input Directory
|
171 |
+
if inputDir is not None:
|
172 |
+
files = [str(x) for x in Path(inputDir).glob('**/*')]
|
173 |
+
documents = ingestFiles(documents, files)
|
174 |
+
if file_list:
|
175 |
+
documents = ingestFiles(documents, file_list, prog)
|
176 |
+
# Ingestion from URLs - also try https://python.langchain.com/docs/integrations/document_loaders/recursive_url_loader
|
177 |
+
if url_list:
|
178 |
+
for url in url_list:
|
179 |
+
documents = ingestURL(documents, url, prog=prog)
|
180 |
+
|
181 |
+
# Cleanup documents
|
182 |
+
for x in documents:
|
183 |
+
if 'WhatsApp Chat with' not in x.metadata['source']:
|
184 |
+
x.page_content = x.page_content.strip().replace('\n', ' ').replace('\\n', ' ').replace(' ', ' ')
|
185 |
+
|
186 |
+
# print(f"Total number of documents: {len(documents)}")
|
187 |
+
return documents
|
188 |
+
|
189 |
+
|
190 |
+
def split_docs(documents):
|
191 |
+
# Splitting and Chunks
|
192 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2500, chunk_overlap=250) # default chunk size of 4000 makes around 1k tokens per doc. with k=4, this means 4k tokens input to LLM.
|
193 |
+
docs = text_splitter.split_documents(documents)
|
194 |
+
return docs
|
195 |
+
|
196 |
+
|
197 |
+
def getSourcesFromMetadata(metadata, sourceOnly=True, sepFileUrl=True):
|
198 |
+
# metadata: list of metadata dict from all documents
|
199 |
+
setSrc = set()
|
200 |
+
for x in metadata:
|
201 |
+
metadataText = '' # we need to convert each metadata dict into a string format. This string will be added to a set
|
202 |
+
if x is not None:
|
203 |
+
# extract source first, and then extract all other items
|
204 |
+
source = x['source']
|
205 |
+
source = source.rsplit('/',1)[-1] if 'http' not in source else source
|
206 |
+
notSource = []
|
207 |
+
for k,v in x.items():
|
208 |
+
if v is not None and k!='source' and k in ['page', 'title']:
|
209 |
+
notSource.extend([f"{k}: {v}"])
|
210 |
+
metadataText = ', '.join([f'source: {source}'] + notSource) if sourceOnly==False else source
|
211 |
+
setSrc.add(metadataText)
|
212 |
+
|
213 |
+
if sepFileUrl:
|
214 |
+
src_files = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted([x for x in setSrc if 'http' not in x], key=str.casefold))]))
|
215 |
+
src_urls = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted([x for x in setSrc if 'http' in x], key=str.casefold))]))
|
216 |
+
|
217 |
+
src_files = 'Files:\n'+src_files if src_files else ''
|
218 |
+
src_urls = 'URLs:\n'+src_urls if src_urls else ''
|
219 |
+
newLineSep = '\n\n' if src_files and src_urls else ''
|
220 |
+
|
221 |
+
return src_files + newLineSep + src_urls , len(setSrc)
|
222 |
+
else:
|
223 |
+
src_docs = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted(list(setSrc), key=str.casefold))]))
|
224 |
+
return src_docs, len(setSrc)
|
225 |
+
|
226 |
+
|
227 |
+
def getVsDict(embeddingFunc, docs, vsDict={}):
|
228 |
+
# create chroma client if doesnt exist
|
229 |
+
if vsDict.get('chromaClient') is None:
|
230 |
+
vsDict['chromaDir'] = './vecstore/'+str(uuid.uuid1())
|
231 |
+
vsDict['chromaClient'] = Chroma(embedding_function=embeddingFunc, persist_directory=vsDict['chromaDir'])
|
232 |
+
# clear chroma client before adding new docs
|
233 |
+
if vsDict['chromaClient']._collection.count()>0:
|
234 |
+
vsDict['chromaClient'].delete(vsDict['chromaClient'].get()['ids'])
|
235 |
+
# add new docs to chroma client
|
236 |
+
vsDict['chromaClient'].add_documents(docs)
|
237 |
+
print('vectorstore count:',vsDict['chromaClient']._collection.count(), 'at', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
|
238 |
+
return vsDict
|
239 |
+
|
240 |
+
# used for Hardcoded documents only - not uploaded by user (userData_vecStore is separate function)
|
241 |
+
def localData_vecStore(openApiKey=None, inputDir=None, file_list=[], url_list=[], vsDict={}):
|
242 |
+
documents = data_ingestion(inputDir, file_list, url_list)
|
243 |
+
if not documents:
|
244 |
+
return {}
|
245 |
+
docs = split_docs(documents)
|
246 |
+
# Embeddings
|
247 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openApiKey)
|
248 |
+
# create chroma client if doesnt exist
|
249 |
+
vsDict_hd = getVsDict(embeddings, docs, vsDict)
|
250 |
+
# get sources from metadata
|
251 |
+
src_str = getSourcesFromMetadata(vsDict_hd['chromaClient'].get()['metadatas'])
|
252 |
+
src_str = str(src_str[1]) + ' source document(s) successfully loaded in vector store.'+'\n\n' + src_str[0]
|
253 |
+
print(src_str)
|
254 |
+
return vsDict_hd
|
255 |
+
|
256 |
+
|
257 |
+
def num_tokens_from_string(string, encoding_name = "cl100k_base"):
|
258 |
+
"""Returns the number of tokens in a text string."""
|
259 |
+
encoding = tiktoken.get_encoding(encoding_name)
|
260 |
+
num_tokens = len(encoding.encode(string))
|
261 |
+
return num_tokens
|