Spaces:
Runtime error
Runtime error
import gradio as gr | |
from sentence_transformers import SentenceTransformer, util | |
from datasets import load_dataset | |
from data_cleaning import prepare_document, cos_dicts, retrieve_top_k_similar | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
import torch | |
demo = gr.Blocks() | |
df = load_dataset("arjunpatel/best-selling-video-games") | |
df.set_format("pandas") | |
df = df["train"][:] | |
cleaned_wikis = df.wiki_page.apply(lambda x: prepare_document(x)) | |
tfidf = TfidfVectorizer() | |
tfidf_wikis = tfidf.fit_transform(cleaned_wikis.tolist()) | |
video_game_cos_dict = cos_dicts(df.Title, tfidf_wikis.toarray()) | |
embedder = SentenceTransformer('msmarco-MiniLM-L6-cos-v5') | |
msmarco_embeddings = embedder.encode(df.wiki_page.tolist(), convert_to_tensor = True) | |
def nli_search(query): | |
# given a query, return top few similar games | |
# example code taken from Sentence Transformers docs | |
query_embedding = embedder.encode(query, convert_to_tensor=True) | |
# We use cosine-similarity and torch.topk to find the highest 5 scores | |
cos_scores = util.cos_sim(query_embedding, msmarco_embeddings)[0] | |
top_results = torch.topk(cos_scores, k=5) | |
#print("\n\n======================\n\n") | |
#print("Query:", query) | |
#print("\nTop 5 most similar sentences in corpus:") | |
ret_list = [] | |
for score, idx in zip(top_results[0], top_results[1]): | |
ret_list.append((df.wiki_page.tolist()[idx][0:100], "(Score: {:.4f})".format(score))) | |
return ret_list | |
def find_similar_games(name, num): | |
return retrieve_top_k_similar(name, video_game_cos_dict, num) | |
with demo: | |
gr.Markdown("<h1><center>Find your next Video Game!</center></h1>") | |
gr.Markdown( | |
"""This Gradio demo allows you to search a list of best selling video games and their corresponding Wikipedia pages | |
using NLP! The first tab allows for a TF-IDF based search, and the second leverages Sentence Transformers for a Natural Language | |
Search. Enjoy!""") | |
with gr.Tab("TF-IDF Similarity Search"): | |
video_game = gr.Dropdown(df.Title.tolist(), default = df.Title.tolist()[0], | |
label = "Selected Game") | |
num_similar = gr.Dropdown([1, 2, 3, 4, 5], default = 1, label = "Number of Similar Games") | |
find_similar = gr.Button("Find 'em!") | |
output = gr.Textbox("Games will appear here!") | |
find_similar.click(fn = find_similar_games, inputs = [video_game, num_similar], | |
outputs = output) | |
with gr.Tab("Natural Language Search"): | |
q = gr.Textbox("Type a query here. Try: find me mario games") | |
find_nli = gr.Button("Search!") | |
nli_output = gr.Textbox("Output will appear here from NLI search") | |
find_nli.click(fn = nli_search, inputs = [q], outputs = nli_output) | |
demo.launch() | |
#drop down for video game | |
#drop down for number of similar games (1-5) | |
#button to retrieve |