arjunpatel's picture
Typo with imports
bc78b1e
raw
history blame
2.86 kB
import gradio as gr
from sentence_transformers import SentenceTransformer, util
from datasets import load_dataset
from data_cleaning import prepare_document, cos_dicts, retrieve_top_k_similar
from sklearn.feature_extraction.text import TfidfVectorizer
import torch
demo = gr.Blocks()
df = load_dataset("arjunpatel/best-selling-video-games")
df.set_format("pandas")
df = df["train"][:]
cleaned_wikis = df.wiki_page.apply(lambda x: prepare_document(x))
tfidf = TfidfVectorizer()
tfidf_wikis = tfidf.fit_transform(cleaned_wikis.tolist())
video_game_cos_dict = cos_dicts(df.Title, tfidf_wikis.toarray())
embedder = SentenceTransformer('msmarco-MiniLM-L6-cos-v5')
msmarco_embeddings = embedder.encode(df.wiki_page.tolist(), convert_to_tensor = True)
def nli_search(query):
# given a query, return top few similar games
# example code taken from Sentence Transformers docs
query_embedding = embedder.encode(query, convert_to_tensor=True)
# We use cosine-similarity and torch.topk to find the highest 5 scores
cos_scores = util.cos_sim(query_embedding, msmarco_embeddings)[0]
top_results = torch.topk(cos_scores, k=5)
#print("\n\n======================\n\n")
#print("Query:", query)
#print("\nTop 5 most similar sentences in corpus:")
ret_list = []
for score, idx in zip(top_results[0], top_results[1]):
ret_list.append((df.wiki_page.tolist()[idx][0:100], "(Score: {:.4f})".format(score)))
return ret_list
def find_similar_games(name, num):
return retrieve_top_k_similar(name, video_game_cos_dict, num)
with demo:
gr.Markdown("<h1><center>Find your next Video Game!</center></h1>")
gr.Markdown(
"""This Gradio demo allows you to search a list of best selling video games and their corresponding Wikipedia pages
using NLP! The first tab allows for a TF-IDF based search, and the second leverages Sentence Transformers for a Natural Language
Search. Enjoy!""")
with gr.Tab("TF-IDF Similarity Search"):
video_game = gr.Dropdown(df.Title.tolist(), default = df.Title.tolist()[0],
label = "Selected Game")
num_similar = gr.Dropdown([1, 2, 3, 4, 5], default = 1, label = "Number of Similar Games")
find_similar = gr.Button("Find 'em!")
output = gr.Textbox("Games will appear here!")
find_similar.click(fn = find_similar_games, inputs = [video_game, num_similar],
outputs = output)
with gr.Tab("Natural Language Search"):
q = gr.Textbox("Type a query here. Try: find me mario games")
find_nli = gr.Button("Search!")
nli_output = gr.Textbox("Output will appear here from NLI search")
find_nli.click(fn = nli_search, inputs = [q], outputs = nli_output)
demo.launch()
#drop down for video game
#drop down for number of similar games (1-5)
#button to retrieve