TheAwakenOne commited on
Commit
efc213f
1 Parent(s): 3840fa6

Updated requirements, README, and app code

Browse files
Files changed (3) hide show
  1. README.md +15 -7
  2. app.py +57 -149
  3. requirements.txt +5 -4
README.md CHANGED
@@ -1,14 +1,22 @@
1
  ---
2
- title: Flux1 Lite 8B Alpha
3
- emoji: 🖼
4
- colorFrom: purple
5
- colorTo: red
6
  sdk: gradio
7
- sdk_version: 5.0.1
8
  app_file: app.py
9
  pinned: false
10
- license: other
11
- short_description: 8B parameter transformer model distilled by Freepik
12
  ---
13
 
 
 
 
 
 
 
 
 
 
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Flux Image Generator (Zero-GPU)
3
+ emoji: 🎨
4
+ colorFrom: red
5
+ colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 4.7.1
8
  app_file: app.py
9
  pinned: false
 
 
10
  ---
11
 
12
+ # Flux Image Generator with Zero-GPU
13
+
14
+ This Space runs the Flux.1-lite-8B-alpha model from Freepik using Zero-GPU allocation to generate images from text descriptions. The interface allows you to adjust various parameters:
15
+
16
+ - Guidance Scale: Controls how closely the image follows the prompt
17
+ - Number of Steps: Determines the quality of the generation
18
+ - Seed: Controls reproducibility
19
+ - Width/Height: Image dimensions
20
+
21
+ Note: This Space uses the @spaces.GPU decorator to allocate GPU resources only when needed, making it more efficient and cost-effective.
22
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,154 +1,62 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
  prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
  ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
-
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
 
 
 
 
 
2
  import torch
3
+ from diffusers import FluxPipeline
4
+ from huggingface_hub import HfApi
5
+ import spaces
6
+
7
+ @spaces.GPU(duration=70) # Allocate GPU for 70 seconds
8
+ def initialize_model():
9
+ model_id = "Freepik/flux.1-lite-8B-alpha"
10
+ pipe = FluxPipeline.from_pretrained(
11
+ model_id,
12
+ torch_dtype=torch.bfloat16
13
+ ).to("cuda")
14
+ return pipe
15
+
16
+ @spaces.GPU(duration=70)
17
+ def generate_image(
 
 
 
18
  prompt,
19
+ guidance_scale=3.5,
20
+ num_steps=28,
21
+ seed=11,
22
+ width=1024,
23
+ height=1024
 
 
 
24
  ):
25
+ # Initialize model within the GPU context
26
+ pipe = initialize_model()
27
+
28
+ with torch.inference_mode():
29
+ image = pipe(
30
+ prompt=prompt,
31
+ generator=torch.Generator(device="cuda").manual_seed(seed),
32
+ num_inference_steps=num_steps,
33
+ guidance_scale=guidance_scale,
34
+ height=height,
35
+ width=width,
36
+ ).images[0]
37
+
38
+ return image
39
+
40
+ # Create the Gradio interface
41
+ demo = gr.Interface(
42
+ fn=generate_image,
43
+ inputs=[
44
+ gr.Textbox(label="Prompt", placeholder="Enter your image description here..."),
45
+ gr.Slider(minimum=1, maximum=20, value=3.5, label="Guidance Scale", step=0.5),
46
+ gr.Slider(minimum=1, maximum=50, value=28, label="Number of Steps", step=1),
47
+ gr.Slider(minimum=1, maximum=1000000, value=11, label="Seed", step=1),
48
+ gr.Slider(minimum=128, maximum=1024, value=1024, label="Width", step=64),
49
+ gr.Slider(minimum=128, maximum=1024, value=1024, label="Height", step=64)
50
+ ],
51
+ outputs=gr.Image(type="pil", label="Generated Image"),
52
+ title="Flux Image Generator (Zero-GPU)",
53
+ description="Generate images using Freepik's Flux model with Zero-GPU allocation",
54
+ examples=[
55
+ ["A close-up image of a green alien with fluorescent skin in the middle of a dark purple forest", 3.5, 28, 11, 1024, 1024],
56
+ ["A serene landscape with mountains at sunset", 3.5, 28, 42, 1024, 1024],
57
+ ]
58
+ )
59
+
60
+ # Launch the app
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  if __name__ == "__main__":
62
+ demo.launch()
requirements.txt CHANGED
@@ -1,6 +1,7 @@
1
- accelerate
2
- diffusers
3
- invisible_watermark
4
  torch
 
5
  transformers
6
- xformers
 
 
 
 
 
 
 
1
  torch
2
+ diffusers
3
  transformers
4
+ gradio
5
+ pillow
6
+ huggingface-hub
7
+ spaces