Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
•
4ae93a7
1
Parent(s):
2f78375
cleanup + refactor
Browse files
app.py
CHANGED
@@ -9,9 +9,9 @@ from utils import (
|
|
9 |
PROPRIETARY_LICENSES,
|
10 |
CAT_NAME_TO_EXPLANATION,
|
11 |
download_latest_data_from_space,
|
|
|
12 |
)
|
13 |
|
14 |
-
# with gr.NO_RELOAD:
|
15 |
###################
|
16 |
### Load Data
|
17 |
###################
|
@@ -72,43 +72,21 @@ merged_dfs = {k: format_data(v) for k, v in merged_dfs.items()}
|
|
72 |
|
73 |
|
74 |
# get constants
|
75 |
-
|
76 |
-
for k, df in merged_dfs.items():
|
77 |
-
filter_ranges[k] = {
|
78 |
-
"min_elo_score": df["rating"].min().round(),
|
79 |
-
"max_elo_score": df["rating"].max().round(),
|
80 |
-
"upper_models_per_month": int(
|
81 |
-
df.groupby(["Month-Year", "License"])["rating"]
|
82 |
-
.apply(lambda x: x.count())
|
83 |
-
.max()
|
84 |
-
),
|
85 |
-
}
|
86 |
-
|
87 |
-
min_elo_score = float("inf")
|
88 |
-
max_elo_score = float("-inf")
|
89 |
-
upper_models_per_month = 0
|
90 |
-
|
91 |
-
for key, value in filter_ranges.items():
|
92 |
-
min_elo_score = min(min_elo_score, value["min_elo_score"])
|
93 |
-
max_elo_score = max(max_elo_score, value["max_elo_score"])
|
94 |
-
upper_models_per_month = max(
|
95 |
-
upper_models_per_month, value["upper_models_per_month"]
|
96 |
-
)
|
97 |
-
|
98 |
|
99 |
date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
|
100 |
|
101 |
|
102 |
-
def get_data_split(dfs, set_name):
|
103 |
-
df = dfs[set_name].copy(deep=True)
|
104 |
-
return df.reset_index(drop=True)
|
105 |
-
|
106 |
-
|
107 |
###################
|
108 |
### Plot Data
|
109 |
###################
|
110 |
|
111 |
|
|
|
|
|
|
|
|
|
|
|
112 |
def build_plot(min_score, max_models_per_month, toggle_annotations, set_selector):
|
113 |
|
114 |
df = get_data_split(merged_dfs, set_name=set_selector)
|
@@ -172,7 +150,7 @@ with gr.Blocks(
|
|
172 |
gr.Markdown(
|
173 |
"""
|
174 |
<div style="text-align: center; max-width: 650px; margin: auto;">
|
175 |
-
<h1 style="font-weight: 900; margin-top: 5px;">🔬 Progress Tracker:
|
176 |
</h1>
|
177 |
<p style="text-align: left; margin-top: 10px; margin-bottom: 10px; line-height: 20px;">
|
178 |
This app visualizes the progress of proprietary and open-source LLMs in the LMSYS Arena ELO leaderboard. The idea is inspired by <a href="https://www.linkedin.com/posts/maxime-labonne_arena-elo-graph-updated-with-new-models-activity-7187062633735368705-u2jB?utm_source=share&utm_medium=member_desktop">this great work</a> from <a href="https://huggingface.co/mlabonne/">Maxime Labonne</a>.
|
|
|
9 |
PROPRIETARY_LICENSES,
|
10 |
CAT_NAME_TO_EXPLANATION,
|
11 |
download_latest_data_from_space,
|
12 |
+
get_constants,
|
13 |
)
|
14 |
|
|
|
15 |
###################
|
16 |
### Load Data
|
17 |
###################
|
|
|
72 |
|
73 |
|
74 |
# get constants
|
75 |
+
min_elo_score, max_elo_score, upper_models_per_month = get_constants(merged_dfs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
|
78 |
|
79 |
|
|
|
|
|
|
|
|
|
|
|
80 |
###################
|
81 |
### Plot Data
|
82 |
###################
|
83 |
|
84 |
|
85 |
+
def get_data_split(dfs, set_name):
|
86 |
+
df = dfs[set_name].copy(deep=True)
|
87 |
+
return df.reset_index(drop=True)
|
88 |
+
|
89 |
+
|
90 |
def build_plot(min_score, max_models_per_month, toggle_annotations, set_selector):
|
91 |
|
92 |
df = get_data_split(merged_dfs, set_name=set_selector)
|
|
|
150 |
gr.Markdown(
|
151 |
"""
|
152 |
<div style="text-align: center; max-width: 650px; margin: auto;">
|
153 |
+
<h1 style="font-weight: 900; margin-top: 5px;">🔬 Progress Tracker: Open vs. Proprietary LLMs
|
154 |
</h1>
|
155 |
<p style="text-align: left; margin-top: 10px; margin-bottom: 10px; line-height: 20px;">
|
156 |
This app visualizes the progress of proprietary and open-source LLMs in the LMSYS Arena ELO leaderboard. The idea is inspired by <a href="https://www.linkedin.com/posts/maxime-labonne_arena-elo-graph-updated-with-new-models-activity-7187062633735368705-u2jB?utm_source=share&utm_medium=member_desktop">this great work</a> from <a href="https://huggingface.co/mlabonne/">Maxime Labonne</a>.
|
utils.py
CHANGED
@@ -58,3 +58,40 @@ def download_latest_data_from_space(
|
|
58 |
repo_type="space",
|
59 |
)
|
60 |
return latest_filepath_local
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
repo_type="space",
|
59 |
)
|
60 |
return latest_filepath_local
|
61 |
+
|
62 |
+
|
63 |
+
def get_constants(dfs):
|
64 |
+
"""
|
65 |
+
Calculate and return the minimum and maximum Elo scores, as well as the maximum number of models per month.
|
66 |
+
|
67 |
+
Parameters:
|
68 |
+
- dfs (dict): A dictionary containing DataFrames for different categories.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
- min_elo_score (float): The minimum Elo score across all DataFrames.
|
72 |
+
- max_elo_score (float): The maximum Elo score across all DataFrames.
|
73 |
+
- upper_models_per_month (int): The maximum number of models per month per license across all DataFrames.
|
74 |
+
"""
|
75 |
+
filter_ranges = {}
|
76 |
+
for k, df in dfs.items():
|
77 |
+
filter_ranges[k] = {
|
78 |
+
"min_elo_score": df["rating"].min().round(),
|
79 |
+
"max_elo_score": df["rating"].max().round(),
|
80 |
+
"upper_models_per_month": int(
|
81 |
+
df.groupby(["Month-Year", "License"])["rating"]
|
82 |
+
.apply(lambda x: x.count())
|
83 |
+
.max()
|
84 |
+
),
|
85 |
+
}
|
86 |
+
|
87 |
+
min_elo_score = float("inf")
|
88 |
+
max_elo_score = float("-inf")
|
89 |
+
upper_models_per_month = 0
|
90 |
+
|
91 |
+
for _, value in filter_ranges.items():
|
92 |
+
min_elo_score = min(min_elo_score, value["min_elo_score"])
|
93 |
+
max_elo_score = max(max_elo_score, value["max_elo_score"])
|
94 |
+
upper_models_per_month = max(
|
95 |
+
upper_models_per_month, value["upper_models_per_month"]
|
96 |
+
)
|
97 |
+
return min_elo_score, max_elo_score, upper_models_per_month
|