import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import subprocess subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) DESCRIPTION = """\ # Phi 3.5 mini ITA 💬 🇮🇹 Fine-tuned version of Microsoft/Phi-3.5-mini-instruct to improve the performance on the Italian language. Small (3.82 B parameters) but capable model, with 128k context length. [🪪 **Model card**](https://huggingface.co/anakin87/Phi-3.5-mini-ITA) """ MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_id = "anakin87/Phi-3.5-mini-ITA" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", trust_remote_code=True, ) model.config.sliding_window = 4096 model.eval() @spaces.GPU(duration=90) def generate( message: str, chat_history: list[tuple[str, str]], system_message: str = "", max_new_tokens: int = 1024, temperature: float = 0.001, top_p: float = 1.0, top_k: int = 50, repetition_penalty: float = 1.0, ) -> Iterator[str]: conversation = [{"role": "system", "content": system_message}] for user, assistant in chat_history: conversation.extend( [ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ] ) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox( value="", label="System message", render=False, ), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0, maximum=4.0, step=0.1, value=0.001, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=1.0, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0, ), ], stop_btn=None, examples=[ ["Ciao! Come stai?"], ["Pro e contro di una relazione a lungo termine. Elenco puntato con max 3 pro e 3 contro sintetici."], ["Quante ore impiega un uomo per mangiare un elicottero?"], ["Come si apre un file JSON in Python?"], ["Fammi un elenco puntato dei pro e contro di vivere in Italia. Massimo 2 pro e 2 contro."], ["Inventa una breve storia con animali sul valore dell'amicizia."], ["Scrivi un articolo di 100 parole sui 'Benefici dell'open-source nella ricerca sull'intelligenza artificiale'"], ["Can you explain briefly to me what is the Python programming language?"], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], cache_examples=False, ) with gr.Blocks(css="style.css", fill_height=True, theme="soft") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()