Spaces:
Runtime error
Runtime error
# pip install diffusers, transformers, accelerate, safetensors, huggingface_hub | |
import os | |
os.system("pip install -U peft") | |
import random | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import spaces | |
import torch | |
from diffusers import ( | |
StableDiffusionXLPipeline, | |
UNet2DConditionModel, | |
EulerDiscreteScheduler, | |
) | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
DESCRIPTION = """ | |
# Res-Adapter :Domain Consistent Resolution Adapter for Diffusion Models | |
**Demo by [ameer azam] - [Twitter](https://twitter.com/Ameerazam18) - [GitHub](https://github.com/AMEERAZAM08)) - [Hugging Face](https://huggingface.co/ameerazam08)** | |
This is a demo of https://huggingface.co/jiaxiangc/res-adapter ResAdapter by ByteDance. | |
ByteDance provide a demo of [ResAdapter](https://huggingface.co/jiaxiangc/res-adapter) with [SDXL-Lightning-Step4](https://huggingface.co/ByteDance/SDXL-Lightning) to expand resolution range from 1024-only to 256~1024. | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += ( | |
"\n<h1>Running on CPU π₯Ά This demo does not work on CPU.</a> instead</h1>" | |
) | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
base = "stabilityai/stable-diffusion-xl-base-1.0" | |
repo = "ByteDance/SDXL-Lightning" | |
ckpt = "sdxl_lightning_4step_unet.safetensors" # Use the correct ckpt for your step setting! | |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16) | |
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda")) | |
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16") | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") | |
pipe = pipe.to(device) | |
# Load resadapter | |
pipe.load_lora_weights( | |
hf_hub_download( | |
repo_id="jiaxiangc/res-adapter", | |
subfolder="sdxl-i", | |
filename="resolution_lora.safetensors", | |
), | |
adapter_name="res_adapter", | |
) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
prompt_2: str = "", | |
negative_prompt_2: str = "", | |
use_negative_prompt: bool = False, | |
use_prompt_2: bool = False, | |
use_negative_prompt_2: bool = False, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 0, | |
num_inference_steps: int = 4, | |
progress=gr.Progress(track_tqdm=True), | |
) -> PIL.Image.Image: | |
print(f'** Generating image for: "{prompt}" **') | |
generator = torch.Generator().manual_seed(seed) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
if not use_prompt_2: | |
prompt_2 = None # type: ignore | |
if not use_negative_prompt_2: | |
negative_prompt_2 = None # type: ignore | |
pipe.set_adapters(["res_adapter"], adapter_weights=[0.0]) | |
base_image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
output_type="pil", | |
generator=generator, | |
).images[0] | |
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0]) | |
res_adapt = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
output_type="pil", | |
generator=generator, | |
).images[0] | |
return [res_adapt, base_image] | |
examples = [ | |
"A girl smiling", | |
"A boy smiling", | |
] | |
theme = gr.themes.Base( | |
font=[ | |
gr.themes.GoogleFont("Libre Franklin"), | |
gr.themes.GoogleFont("Public Sans"), | |
"system-ui", | |
"sans-serif", | |
], | |
) | |
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
with gr.Group(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
container=False, | |
placeholder="Enter your prompt", | |
) | |
run_button = gr.Button("Generate") | |
# result = gr.Gallery(label="Right is Res-Adapt-LORA and Left is Base"), | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) | |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) | |
use_negative_prompt_2 = gr.Checkbox( | |
label="Use negative prompt 2", value=False | |
) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
visible=True, | |
) | |
prompt_2 = gr.Text( | |
label="Prompt 2", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
visible=False, | |
) | |
negative_prompt_2 = gr.Text( | |
label="Negative prompt 2", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0, | |
maximum=20, | |
step=0.1, | |
value=0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=None, | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
queue=False, | |
api_name=False, | |
) | |
use_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_prompt_2, | |
outputs=prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
use_negative_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt_2, | |
outputs=negative_prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
prompt_2.submit, | |
negative_prompt_2.submit, | |
run_button.click, | |
], | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
prompt_2, | |
negative_prompt_2, | |
use_negative_prompt, | |
use_prompt_2, | |
use_negative_prompt_2, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=gr.Gallery(label="Left is ResAdapter and Right is Base"), | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20, api_open=False).launch(show_api=False) | |