Spaces:
Sleeping
Sleeping
amartyasaran
commited on
Commit
•
5dd5730
1
Parent(s):
c2a504f
- app.py +35 -31
- faiss_index +0 -0
- faiss_index.json +1 -0
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import json
|
2 |
import streamlit as st
|
3 |
-
|
4 |
-
from haystack.document_stores import InMemoryDocumentStore
|
5 |
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
|
6 |
from haystack.nodes import DensePassageRetriever
|
7 |
from haystack.nodes import FARMReader
|
@@ -9,22 +9,24 @@ from haystack.pipelines import ExtractiveQAPipeline
|
|
9 |
|
10 |
st.title("DPR on Supreme Court Judgements (Capital Gain)")
|
11 |
|
12 |
-
with open("responses.json", 'r') as f:
|
13 |
-
|
14 |
|
15 |
-
documents = [
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
]
|
24 |
|
25 |
# document_store = FAISSDocumentStore(embedding_dim=768, faiss_index_factory_str="Flat")
|
26 |
-
document_store = InMemoryDocumentStore()
|
27 |
-
document_store.write_documents(documents)
|
|
|
|
|
28 |
|
29 |
retriever = DensePassageRetriever(
|
30 |
document_store=document_store,
|
@@ -32,28 +34,30 @@ retriever = DensePassageRetriever(
|
|
32 |
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
|
33 |
)
|
34 |
|
35 |
-
document_store.update_embeddings(retriever)
|
36 |
-
# document_store.save("
|
|
|
|
|
37 |
|
38 |
reader = FARMReader(model_name_or_path="deepset/bert-base-cased-squad2")
|
39 |
|
40 |
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever)
|
41 |
|
42 |
-
query = st.text_input("Enter your query:", "")
|
43 |
|
44 |
-
if query:
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
|
54 |
# query = st.text_input("Enter Question")
|
55 |
-
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
|
|
1 |
import json
|
2 |
import streamlit as st
|
3 |
+
from haystack.document_stores import FAISSDocumentStore
|
4 |
+
# from haystack.document_stores import InMemoryDocumentStore
|
5 |
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
|
6 |
from haystack.nodes import DensePassageRetriever
|
7 |
from haystack.nodes import FARMReader
|
|
|
9 |
|
10 |
st.title("DPR on Supreme Court Judgements (Capital Gain)")
|
11 |
|
12 |
+
# with open("responses.json", 'r') as f:
|
13 |
+
# data = json.load(f)
|
14 |
|
15 |
+
# documents = [
|
16 |
+
# {
|
17 |
+
# "content": doc["text"],
|
18 |
+
# "meta": {
|
19 |
+
# "name": doc["title"],
|
20 |
+
# "url": doc["url"]
|
21 |
+
# }
|
22 |
+
# } for doc in data
|
23 |
+
# ]
|
24 |
|
25 |
# document_store = FAISSDocumentStore(embedding_dim=768, faiss_index_factory_str="Flat")
|
26 |
+
# document_store = InMemoryDocumentStore()
|
27 |
+
# document_store.write_documents(documents)
|
28 |
+
|
29 |
+
document_store = FAISSDocumentStore.load("faiss_index")
|
30 |
|
31 |
retriever = DensePassageRetriever(
|
32 |
document_store=document_store,
|
|
|
34 |
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
|
35 |
)
|
36 |
|
37 |
+
# document_store.update_embeddings(retriever)
|
38 |
+
# document_store.save("./document_store")
|
39 |
+
|
40 |
+
|
41 |
|
42 |
reader = FARMReader(model_name_or_path="deepset/bert-base-cased-squad2")
|
43 |
|
44 |
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever)
|
45 |
|
46 |
+
# query = st.text_input("Enter your query:", "")
|
47 |
|
48 |
+
# # if query:
|
49 |
+
# # with st.spinner("Searching..."):
|
50 |
+
# # results = pipeline.run(query=query, params={"Retriever": {"top_k": 5}})
|
51 |
+
# # st.write("Results:")
|
52 |
+
# # for idx, result in enumerate(results["documents"]):
|
53 |
+
# # st.write(f"**{idx + 1}. {result.meta['name']}**")
|
54 |
+
# # st.write(f"URL: {result.meta['url']}")
|
55 |
+
# # st.write(result.content)
|
56 |
+
# # st.write("---")
|
57 |
|
58 |
# query = st.text_input("Enter Question")
|
59 |
+
query = "What is the subject matter of the petition in the Sadanand S. Varde case?"
|
60 |
+
result = pipeline.run(query=query, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}})
|
61 |
|
62 |
+
for answer in result['answers']:
|
63 |
+
st.markdown(f"=====================\nAnswer: {answer.answer}\nContext: {answer.context}\nScore: {answer.score}")
|
faiss_index
ADDED
Binary file (338 kB). View file
|
|
faiss_index.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"embedding_dim": 768, "faiss_index_factory_str": "Flat"}
|