Spaces:
Sleeping
Sleeping
import json | |
import pickle | |
import streamlit as st | |
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer | |
from haystack.nodes import DensePassageRetriever | |
from haystack.nodes import FARMReader | |
from haystack.pipelines import ExtractiveQAPipeline | |
st.title("DPR on Supreme Court Judgements (Capital Gain)") | |
# with open("responses.json", 'r') as f: | |
# data = json.load(f) | |
# documents = [ | |
# { | |
# "content": doc["text"], | |
# "meta": { | |
# "name": doc["title"], | |
# "url": doc["url"] | |
# } | |
# } for doc in data | |
# ] | |
# document_store = FAISSDocumentStore(embedding_dim=768, faiss_index_factory_str="Flat", sql_url="sqlite:///faiss_document_store.d") | |
with open("inmemory_document_store.pkl", "rb") as f: | |
document_store = pickle.load(f) | |
# document_store.write_documents(documents) | |
# document_store = FAISSDocumentStore.load(index_path="./faiss_index", config_path="./faiss_index.json") | |
retriever = DensePassageRetriever( | |
document_store=document_store, | |
query_embedding_model="facebook/dpr-question_encoder-single-nq-base", | |
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base", | |
) | |
# document_store.update_embeddings(retriever) | |
# document_store.save(index_path="./faiss_index", config_path="./faiss_index.json") | |
# with open("inmemory_document_store.pkl", "wb") as f: | |
# pickle.dump(document_store, f) | |
reader = FARMReader(model_name_or_path="deepset/bert-base-cased-squad2") | |
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever) | |
query = st.text_input("Enter your query:", "") | |
if query: | |
with st.spinner("Searching..."): | |
results = pipeline.run(query=query, params={"Retriever": {"top_k": 5}}) | |
for answer in results['answers']: | |
st.markdown(f"=====================\nAnswer: {answer.answer}\nContext: {answer.context}\nScore: {answer.score}") | |
# query = st.text_input("Enter Question") | |
# query = "What is the subject matter of the petition in the Sadanand S. Varde case?" | |
# result = pipeline.run(query=query, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}) | |
# for answer in result['answers']: | |
# print(f"=====================\nAnswer: {answer.answer}\nContext: {answer.context}\nScore: {answer.score}") |