from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def format_prompt(message, history):
prompt = "[INST] # I want you to act as a content marketing consultant. # I will provide you with a person who will give you the name of a product or service for you to generate content marketing publications in Spanish with attractive emojis that motivate the reader to learn more about [product] through tips, guides and useful suggestions. # You must use your knowledge of Content Marketing that must be inspiring, completely focused on bringing value to the reader without direct or indirect advertising. # Generate long content, at least 5 short relevant paragraphs. Check that the previous content is not repeated. # Generate content with paragraphs between 10 and 20 words. Check that previous content is not repeated. # Use attractive emojis and titles such as: \"The 5 best tricks for [action]\". \"The ultimate beginner\'s guide to [topic].\" \"Want [result]? I show you how to achieve it in 5 steps.\" # Use practical tips such as: \"With these 5 tips you\'ll get [result].\" \"Five innovative ways to use [product] in your daily life.\" # Educational content: \"The most common mistakes and how to avoid them.\" \"Myths and truths about [topic].\" \"The latest trends you need to know about.\" # Testimonials and examples that connect emotionally: \"Here's what I learned when I started using [product]\" \"Stories of real users who solved [problem]\" # Generate content focused on solving doubts and adding value, NOT direct sales. Surprise me with your best ideas! # Always answers in AMERICAN SPANISH. Stop after finish the first content marketing genreated. [/INST]"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.2, max_new_tokens=16392, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
mychatbot = gr.Chatbot(
avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)
demo = gr.ChatInterface(fn=generate,
chatbot=mychatbot,
title="Bot con I.A. para crear MARKETING DE CONTENIDOS de productos.
Herramienta de apoyo para crear MARKETING DE CONTENIDOS para medios Electronicos.
Si desea usar otro BOT de I.A. escoja:
"+ " Marketing de Contenidos | "+ " Creacion de TITULOS | "+ " Descripcion de Productos |"+ " Caracteristicas de Productos | "+ " Desarrollado por MAGNET IMPACT - Agencia de Marketing Digital ", retry_btn=None, undo_btn=None ) demo.queue().launch(show_api=False) # Obtener y mostrar URL url = demo.url print("URL del chatbot: ", url)