import os
import random
import numpy as np
from PIL import Image
from loguru import logger
import sys
import inspect
import math
import torch
import torch.distributed as dist
from collections import OrderedDict
from torch import nn
def init_random_seed(seed=None, device='cuda', rank=0, world_size=1):
"""Initialize random seed."""
if seed is not None:
return seed
# Make sure all ranks share the same random seed to prevent
# some potential bugs. Please refer to
# https://github.com/open-mmlab/mmdetection/issues/6339
seed = np.random.randint(2**31)
if world_size == 1:
return seed
if rank == 0:
random_num = torch.tensor(seed, dtype=torch.int32, device=device)
else:
random_num = torch.tensor(0, dtype=torch.int32, device=device)
dist.broadcast(random_num, src=0)
return random_num.item()
def set_random_seed(seed, deterministic=False):
"""Set random seed."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def worker_init_fn(worker_id, num_workers, rank, seed):
# The seed of each worker equals to
# num_worker * rank + worker_id + user_seed
worker_seed = num_workers * rank + worker_id + seed
np.random.seed(worker_seed)
random.seed(worker_seed)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":f"):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
if self.name == "Lr":
fmtstr = "{name}={val" + self.fmt + "}"
else:
fmtstr = "{name}={val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
logger.info(" ".join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = "{:" + str(num_digits) + "d}"
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
def get_caller_name(depth=0):
"""
Args:
depth (int): Depth of caller conext, use 0 for caller depth.
Default value: 0.
Returns:
str: module name of the caller
"""
# the following logic is a little bit faster than inspect.stack() logic
frame = inspect.currentframe().f_back
for _ in range(depth):
frame = frame.f_back
return frame.f_globals["__name__"]
class StreamToLoguru:
"""
stream object that redirects writes to a logger instance.
"""
def __init__(self, level="INFO", caller_names=("apex", "pycocotools")):
"""
Args:
level(str): log level string of loguru. Default value: "INFO".
caller_names(tuple): caller names of redirected module.
Default value: (apex, pycocotools).
"""
self.level = level
self.linebuf = ""
self.caller_names = caller_names
def write(self, buf):
full_name = get_caller_name(depth=1)
module_name = full_name.rsplit(".", maxsplit=-1)[0]
if module_name in self.caller_names:
for line in buf.rstrip().splitlines():
# use caller level log
logger.opt(depth=2).log(self.level, line.rstrip())
else:
sys.__stdout__.write(buf)
def flush(self):
pass
def redirect_sys_output(log_level="INFO"):
redirect_logger = StreamToLoguru(log_level)
sys.stderr = redirect_logger
sys.stdout = redirect_logger
def setup_logger(save_dir, filename="log.txt", mode="a"):
"""setup logger for training and testing.
Args:
save_dir(str): location to save log file
distributed_rank(int): device rank when multi-gpu environment
filename (string): log save name.
mode(str): log file write mode, `append` or `override`. default is `a`.
Return:
logger instance.
"""
loguru_format = (
"{time:YYYY-MM-DD HH:mm:ss} | "
"{level: <8} | "
"{name}:{line} - {message}")
logger.remove()
save_file = os.path.join(save_dir, filename)
if mode == "o" and os.path.exists(save_file):
os.remove(save_file)
# only keep logger in rank0 process
logger.add(
sys.stderr,
format=loguru_format,
level="INFO",
enqueue=True,
)
logger.add(save_file)
# redirect stdout/stderr to loguru
redirect_sys_output("INFO")
def trainMetric(pred, label):
pred = torch.argmax(pred,dim = 1)
prec = torch.sum(pred == label)
return prec
# def compute_AP(predicted_probs, true_labels):
# num_samples, num_classes = true_labels.shape
#
# # 初始化用于存储每个类别的 AP 的列表
# aps = []
#
# for class_idx in range(num_classes):
# class_true_labels = true_labels[:, class_idx]
# class_similarity_scores = predicted_probs[:, class_idx]
#
# # 获取按相似性分数排序后的样本索引
# sorted_indices = torch.argsort(class_similarity_scores, descending=True)
#
# # 计算累积精度和召回率
# tp = 0
# fp = 0
# precision_at_rank = []
# recall_at_rank = []
#
# for rank, idx in enumerate(sorted_indices):
# if class_true_labels[idx] == 1:
# tp += 1
# else:
# fp += 1
# precision = tp / (tp + fp)
# recall = tp / torch.sum(class_true_labels)
# precision_at_rank.append(precision)
# recall_at_rank.append(recall)
#
# # 计算平均精度(AP)通过计算曲线下的面积
# precision_at_rank = torch.tensor(precision_at_rank)
# recall_at_rank = torch.tensor(recall_at_rank)
# ap = torch.trapz(precision_at_rank, recall_at_rank)
#
# aps.append(ap)
#
#
# return aps
def token_wise_similarity(rep1, rep2, mask=None, chunk_size=1024):
batch_size1, n_token1, feat_dim = rep1.shape
batch_size2, n_token2, _ = rep2.shape
num_folds = math.ceil(batch_size2 / chunk_size)
output = []
for i in range(num_folds):
rep2_seg = rep2[i * chunk_size:(i + 1) * chunk_size]
out_i = rep1.reshape(-1, feat_dim) @ rep2_seg.reshape(-1, feat_dim).T
out_i = out_i.reshape(batch_size1, n_token1, -1, n_token2).max(3)[0]
if mask is None:
out_i = out_i.mean(1)
else:
out_i = out_i.sum(1)
output.append(out_i)
output = torch.cat(output, dim=1)
if mask is not None:
output = output / mask.sum(1, keepdim=True).clamp_(min=1)
return output
def compute_acc(logits, targets, topk=5):
targets = targets.squeeze(1)
p = logits.topk(topk, 1, True, True)[1]
pred = logits.topk(topk, 1, True, True)[1]
gt = targets[pred,:]
a = gt.view(1, -1)
# b = a.expand_as(pred)
c = gt.eq(targets)
correct = pred.eq(targets.view(1, -1).expand_as(pred)).contiguous()
acc_1 = correct[:1].sum(0)
acc_k = correct[:topk].sum(0)
return acc_1, acc_k
def compute_mAP(predicted_probs, true_labels):
aps = compute_AP(predicted_probs, true_labels)
aps = [ap for ap in aps if not torch.isnan(ap)]
mAP = torch.mean(torch.tensor(aps))
return mAP
def compute_F1(predictions, labels, k_val=5):
labels = labels.squeeze(1)
idx = predictions.topk(dim=1, k=k_val)[1]
predictions.fill_(0)
predictions.scatter_(dim=1, index=idx, src=torch.ones(predictions.size(0), k_val).to(predictions.device))
mask = predictions == 1
TP = (labels[mask] == 1).sum().float()
tpfp = mask.sum().float()
tpfn = (labels == 1).sum().float()
p = TP / tpfp
r = TP/tpfn
f1 = 2*p*r/(p+r)
return f1, p, r
def compute_AP(predictions, labels):
num_class = predictions.size(1)
ap = torch.zeros(num_class).to(predictions.device)
empty_class = 0
for idx_cls in range(num_class):
prediction = predictions[:, idx_cls]
label = labels[:, idx_cls]
mask = label.abs() == 1
if (label > 0).sum() == 0:
empty_class += 1
continue
binary_label = torch.clamp(label[mask], min=0, max=1)
sorted_pred, sort_idx = prediction[mask].sort(descending=True)
sorted_label = binary_label[sort_idx]
tmp = (sorted_label == 1).float()
tp = tmp.cumsum(0)
fp = (sorted_label != 1).float().cumsum(0)
num_pos = binary_label.sum()
rec = tp/num_pos
prec = tp/(tp+fp)
ap_cls = (tmp*prec).sum()/num_pos
ap[idx_cls].copy_(ap_cls)
return ap, empty_class
def compute_ACG(predictions, labels, k_val=5):
gt = labels.squeeze(1)
idx = predictions.topk(dim=1, k=k_val)[1]
pred = gt[idx, :]
pred[pred == -1] = 0
c = labels.eq(pred) # common label
r = c.sum(-1) # similarity level
# acg
acg = c.sum(-1).sum(-1) / k_val
lg = torch.log1p(torch.arange(1, k_val+1, 1) ).to(r.device)
# dcg
dcg = (torch.pow(2, r) - 1) / lg
ir, _ = r.sort(-1, descending=True)
idcg = (torch.pow(2, ir) - 1) / lg
idcg[idcg == 0] = 1e-6
ndcg = dcg.sum(-1) / idcg.sum(-1)
# map
pos = r.clone()
pos[pos != 0] = 1
j = torch.arange(1, k_val + 1, 1).to(pos.device)
P = torch.cumsum(pos, 1) / j
Npos = torch.sum(pos, 1)
Npos[Npos == 0] = 1
AP = torch.sum(P * pos, 1)
map = torch.sum(P * pos, 1) / Npos
# wmap
acgj = torch.cumsum(r, 1) / j
wmap = torch.sum(acgj * pos, 1) / Npos
return acg, ndcg, map, wmap
def compute_mAPw(predictions, labels, k_val=5):
gt = labels.squeeze(1)
idx = predictions.topk(dim=1, k=k_val)[1]
pred = gt[idx, :]
pred[pred == -1] = 0
c = labels.eq(pred)
r = c.sum(-1)
pos = r.clone()
pos[pos != 0] = 1
P = torch.cumsum(pos) / torch.arange(1, k_val+1, 1)
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate with half-cycle cosine after warmup"""
if epoch < args.warmup_epochs:
lr = args.base_lr * epoch / args.warmup_epochs
else:
lr = args.min_lr + (args.base_lr - args.min_lr) * 0.5 * \
(1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
for param_group in optimizer.param_groups:
if "lr_scale" in param_group:
param_group["lr"] = lr * param_group["lr_scale"]
else:
param_group["lr"] = lr
return lr
def load_ckpt(weight_dir, model, map_location, args):
checkpoint = torch.load(weight_dir, map_location=map_location)
if args.resume:
resume_epoch = checkpoint['epoch']
else:
resume_epoch = 0
pre_weight = checkpoint['state_dict']
new_pre_weight = OrderedDict()
# pre_weight =torch.jit.load(resume)
model_dict = model.state_dict()
new_model_dict = OrderedDict()
for k, v in pre_weight.items():
new_k = k.replace('module.', '') if 'module' in k else k
# 针对batch_size=1
# new_k = new_k.replace('1','2') if 'proj.1' in new_k else new_k
new_pre_weight[new_k] = v
# for k, v in model_dict.items():
# new_k = k.replace('module.', '') if 'module' in k else k
# new_model_dict[new_k] = v
pre_weight = new_pre_weight # ["model_state"]
# pretrained_dict = {}
# t_n = 0
# v_n = 0
# for k, v in pre_weight.items():
# t_n += 1
# if k in new_model_dict:
# k = 'module.' + k if 'module' not in k else k
# v_n += 1
# pretrained_dict[k] = v
# print(k)
# os._exit()
# print(f'{v_n}/{t_n} weights have been loaded!')
model_dict.update(pre_weight)
model.load_state_dict(model_dict, strict=False)
return model, resume_epoch
def load_ckpt_fpn(weight_dir, model, map_location):
pre_weight = torch.load(weight_dir, map_location=map_location)['state_dict']
epoch = torch.load(weight_dir, map_location=map_location)['epoch']
new_pre_weight = OrderedDict()
# pre_weight =torch.jit.load(resume)
model_dict = model.state_dict()
for k, v in pre_weight.items():
new_k = k.replace('module.', '') if 'module' in k else k
# if not (new_k.startswith('FPN') or new_k.startswith('gap')):
new_pre_weight[new_k] = v
pre_weight = new_pre_weight
# ["model_state"]
model_dict.update(pre_weight)
model.load_state_dict(model_dict, strict=True)
return model, epoch
def load_ckpt_old(weight_dir, model, map_location):
pre_weight = torch.load(weight_dir, map_location=map_location)['state_dict']
epoch = torch.load(weight_dir, map_location=map_location)['epoch']
new_pre_weight = OrderedDict()
# pre_weight =torch.jit.load(resume)
model_dict = model.state_dict()
for k, v in pre_weight.items():
new_k = k.replace('module.', '') if 'module' in k else k
if not (new_k.startswith('FPN') or new_k.startswith('gap')):
new_pre_weight[new_k] = v
pre_weight = new_pre_weight
# ["model_state"]
model_dict.update(pre_weight)
model.load_state_dict(model_dict, strict=False)
return model, epoch
def compare_ckpt(model1, model2):
V = dict()
for k, v in model1.items():
if k.startswith('projT'):
V[k] = v
for k, v in model2.items():
if k in sorted(V.keys()):
model2[k] = V[k]
return model2