Spaces:
Sleeping
Sleeping
import os | |
import random | |
import numpy as np | |
from PIL import Image | |
from loguru import logger | |
import sys | |
import inspect | |
import math | |
import torch | |
import torch.distributed as dist | |
from collections import OrderedDict | |
from torch import nn | |
def init_random_seed(seed=None, device='cuda', rank=0, world_size=1): | |
"""Initialize random seed.""" | |
if seed is not None: | |
return seed | |
# Make sure all ranks share the same random seed to prevent | |
# some potential bugs. Please refer to | |
# https://github.com/open-mmlab/mmdetection/issues/6339 | |
seed = np.random.randint(2**31) | |
if world_size == 1: | |
return seed | |
if rank == 0: | |
random_num = torch.tensor(seed, dtype=torch.int32, device=device) | |
else: | |
random_num = torch.tensor(0, dtype=torch.int32, device=device) | |
dist.broadcast(random_num, src=0) | |
return random_num.item() | |
def set_random_seed(seed, deterministic=False): | |
"""Set random seed.""" | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
if deterministic: | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
def worker_init_fn(worker_id, num_workers, rank, seed): | |
# The seed of each worker equals to | |
# num_worker * rank + worker_id + user_seed | |
worker_seed = num_workers * rank + worker_id + seed | |
np.random.seed(worker_seed) | |
random.seed(worker_seed) | |
class AverageMeter(object): | |
"""Computes and stores the average and current value""" | |
def __init__(self, name, fmt=":f"): | |
self.name = name | |
self.fmt = fmt | |
self.reset() | |
def reset(self): | |
self.val = 0 | |
self.avg = 0 | |
self.sum = 0 | |
self.count = 0 | |
def update(self, val, n=1): | |
self.val = val | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count | |
def __str__(self): | |
if self.name == "Lr": | |
fmtstr = "{name}={val" + self.fmt + "}" | |
else: | |
fmtstr = "{name}={val" + self.fmt + "} ({avg" + self.fmt + "})" | |
return fmtstr.format(**self.__dict__) | |
class ProgressMeter(object): | |
def __init__(self, num_batches, meters, prefix=""): | |
self.batch_fmtstr = self._get_batch_fmtstr(num_batches) | |
self.meters = meters | |
self.prefix = prefix | |
def display(self, batch): | |
entries = [self.prefix + self.batch_fmtstr.format(batch)] | |
entries += [str(meter) for meter in self.meters] | |
logger.info(" ".join(entries)) | |
def _get_batch_fmtstr(self, num_batches): | |
num_digits = len(str(num_batches // 1)) | |
fmt = "{:" + str(num_digits) + "d}" | |
return "[" + fmt + "/" + fmt.format(num_batches) + "]" | |
def get_caller_name(depth=0): | |
""" | |
Args: | |
depth (int): Depth of caller conext, use 0 for caller depth. | |
Default value: 0. | |
Returns: | |
str: module name of the caller | |
""" | |
# the following logic is a little bit faster than inspect.stack() logic | |
frame = inspect.currentframe().f_back | |
for _ in range(depth): | |
frame = frame.f_back | |
return frame.f_globals["__name__"] | |
class StreamToLoguru: | |
""" | |
stream object that redirects writes to a logger instance. | |
""" | |
def __init__(self, level="INFO", caller_names=("apex", "pycocotools")): | |
""" | |
Args: | |
level(str): log level string of loguru. Default value: "INFO". | |
caller_names(tuple): caller names of redirected module. | |
Default value: (apex, pycocotools). | |
""" | |
self.level = level | |
self.linebuf = "" | |
self.caller_names = caller_names | |
def write(self, buf): | |
full_name = get_caller_name(depth=1) | |
module_name = full_name.rsplit(".", maxsplit=-1)[0] | |
if module_name in self.caller_names: | |
for line in buf.rstrip().splitlines(): | |
# use caller level log | |
logger.opt(depth=2).log(self.level, line.rstrip()) | |
else: | |
sys.__stdout__.write(buf) | |
def flush(self): | |
pass | |
def redirect_sys_output(log_level="INFO"): | |
redirect_logger = StreamToLoguru(log_level) | |
sys.stderr = redirect_logger | |
sys.stdout = redirect_logger | |
def setup_logger(save_dir, filename="log.txt", mode="a"): | |
"""setup logger for training and testing. | |
Args: | |
save_dir(str): location to save log file | |
distributed_rank(int): device rank when multi-gpu environment | |
filename (string): log save name. | |
mode(str): log file write mode, `append` or `override`. default is `a`. | |
Return: | |
logger instance. | |
""" | |
loguru_format = ( | |
"<green>{time:YYYY-MM-DD HH:mm:ss}</green> | " | |
"<level>{level: <8}</level> | " | |
"<cyan>{name}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>") | |
logger.remove() | |
save_file = os.path.join(save_dir, filename) | |
if mode == "o" and os.path.exists(save_file): | |
os.remove(save_file) | |
# only keep logger in rank0 process | |
logger.add( | |
sys.stderr, | |
format=loguru_format, | |
level="INFO", | |
enqueue=True, | |
) | |
logger.add(save_file) | |
# redirect stdout/stderr to loguru | |
redirect_sys_output("INFO") | |
def trainMetric(pred, label): | |
pred = torch.argmax(pred,dim = 1) | |
prec = torch.sum(pred == label) | |
return prec | |
# def compute_AP(predicted_probs, true_labels): | |
# num_samples, num_classes = true_labels.shape | |
# | |
# # 初始化用于存储每个类别的 AP 的列表 | |
# aps = [] | |
# | |
# for class_idx in range(num_classes): | |
# class_true_labels = true_labels[:, class_idx] | |
# class_similarity_scores = predicted_probs[:, class_idx] | |
# | |
# # 获取按相似性分数排序后的样本索引 | |
# sorted_indices = torch.argsort(class_similarity_scores, descending=True) | |
# | |
# # 计算累积精度和召回率 | |
# tp = 0 | |
# fp = 0 | |
# precision_at_rank = [] | |
# recall_at_rank = [] | |
# | |
# for rank, idx in enumerate(sorted_indices): | |
# if class_true_labels[idx] == 1: | |
# tp += 1 | |
# else: | |
# fp += 1 | |
# precision = tp / (tp + fp) | |
# recall = tp / torch.sum(class_true_labels) | |
# precision_at_rank.append(precision) | |
# recall_at_rank.append(recall) | |
# | |
# # 计算平均精度(AP)通过计算曲线下的面积 | |
# precision_at_rank = torch.tensor(precision_at_rank) | |
# recall_at_rank = torch.tensor(recall_at_rank) | |
# ap = torch.trapz(precision_at_rank, recall_at_rank) | |
# | |
# aps.append(ap) | |
# | |
# | |
# return aps | |
def token_wise_similarity(rep1, rep2, mask=None, chunk_size=1024): | |
batch_size1, n_token1, feat_dim = rep1.shape | |
batch_size2, n_token2, _ = rep2.shape | |
num_folds = math.ceil(batch_size2 / chunk_size) | |
output = [] | |
for i in range(num_folds): | |
rep2_seg = rep2[i * chunk_size:(i + 1) * chunk_size] | |
out_i = rep1.reshape(-1, feat_dim) @ rep2_seg.reshape(-1, feat_dim).T | |
out_i = out_i.reshape(batch_size1, n_token1, -1, n_token2).max(3)[0] | |
if mask is None: | |
out_i = out_i.mean(1) | |
else: | |
out_i = out_i.sum(1) | |
output.append(out_i) | |
output = torch.cat(output, dim=1) | |
if mask is not None: | |
output = output / mask.sum(1, keepdim=True).clamp_(min=1) | |
return output | |
def compute_acc(logits, targets, topk=5): | |
targets = targets.squeeze(1) | |
p = logits.topk(topk, 1, True, True)[1] | |
pred = logits.topk(topk, 1, True, True)[1] | |
gt = targets[pred,:] | |
a = gt.view(1, -1) | |
# b = a.expand_as(pred) | |
c = gt.eq(targets) | |
correct = pred.eq(targets.view(1, -1).expand_as(pred)).contiguous() | |
acc_1 = correct[:1].sum(0) | |
acc_k = correct[:topk].sum(0) | |
return acc_1, acc_k | |
def compute_mAP(predicted_probs, true_labels): | |
aps = compute_AP(predicted_probs, true_labels) | |
aps = [ap for ap in aps if not torch.isnan(ap)] | |
mAP = torch.mean(torch.tensor(aps)) | |
return mAP | |
def compute_F1(predictions, labels, k_val=5): | |
labels = labels.squeeze(1) | |
idx = predictions.topk(dim=1, k=k_val)[1] | |
predictions.fill_(0) | |
predictions.scatter_(dim=1, index=idx, src=torch.ones(predictions.size(0), k_val).to(predictions.device)) | |
mask = predictions == 1 | |
TP = (labels[mask] == 1).sum().float() | |
tpfp = mask.sum().float() | |
tpfn = (labels == 1).sum().float() | |
p = TP / tpfp | |
r = TP/tpfn | |
f1 = 2*p*r/(p+r) | |
return f1, p, r | |
def compute_AP(predictions, labels): | |
num_class = predictions.size(1) | |
ap = torch.zeros(num_class).to(predictions.device) | |
empty_class = 0 | |
for idx_cls in range(num_class): | |
prediction = predictions[:, idx_cls] | |
label = labels[:, idx_cls] | |
mask = label.abs() == 1 | |
if (label > 0).sum() == 0: | |
empty_class += 1 | |
continue | |
binary_label = torch.clamp(label[mask], min=0, max=1) | |
sorted_pred, sort_idx = prediction[mask].sort(descending=True) | |
sorted_label = binary_label[sort_idx] | |
tmp = (sorted_label == 1).float() | |
tp = tmp.cumsum(0) | |
fp = (sorted_label != 1).float().cumsum(0) | |
num_pos = binary_label.sum() | |
rec = tp/num_pos | |
prec = tp/(tp+fp) | |
ap_cls = (tmp*prec).sum()/num_pos | |
ap[idx_cls].copy_(ap_cls) | |
return ap, empty_class | |
def compute_ACG(predictions, labels, k_val=5): | |
gt = labels.squeeze(1) | |
idx = predictions.topk(dim=1, k=k_val)[1] | |
pred = gt[idx, :] | |
pred[pred == -1] = 0 | |
c = labels.eq(pred) # common label | |
r = c.sum(-1) # similarity level | |
# acg | |
acg = c.sum(-1).sum(-1) / k_val | |
lg = torch.log1p(torch.arange(1, k_val+1, 1) ).to(r.device) | |
# dcg | |
dcg = (torch.pow(2, r) - 1) / lg | |
ir, _ = r.sort(-1, descending=True) | |
idcg = (torch.pow(2, ir) - 1) / lg | |
idcg[idcg == 0] = 1e-6 | |
ndcg = dcg.sum(-1) / idcg.sum(-1) | |
# map | |
pos = r.clone() | |
pos[pos != 0] = 1 | |
j = torch.arange(1, k_val + 1, 1).to(pos.device) | |
P = torch.cumsum(pos, 1) / j | |
Npos = torch.sum(pos, 1) | |
Npos[Npos == 0] = 1 | |
AP = torch.sum(P * pos, 1) | |
map = torch.sum(P * pos, 1) / Npos | |
# wmap | |
acgj = torch.cumsum(r, 1) / j | |
wmap = torch.sum(acgj * pos, 1) / Npos | |
return acg, ndcg, map, wmap | |
def compute_mAPw(predictions, labels, k_val=5): | |
gt = labels.squeeze(1) | |
idx = predictions.topk(dim=1, k=k_val)[1] | |
pred = gt[idx, :] | |
pred[pred == -1] = 0 | |
c = labels.eq(pred) | |
r = c.sum(-1) | |
pos = r.clone() | |
pos[pos != 0] = 1 | |
P = torch.cumsum(pos) / torch.arange(1, k_val+1, 1) | |
def adjust_learning_rate(optimizer, epoch, args): | |
"""Decay the learning rate with half-cycle cosine after warmup""" | |
if epoch < args.warmup_epochs: | |
lr = args.base_lr * epoch / args.warmup_epochs | |
else: | |
lr = args.min_lr + (args.base_lr - args.min_lr) * 0.5 * \ | |
(1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs))) | |
for param_group in optimizer.param_groups: | |
if "lr_scale" in param_group: | |
param_group["lr"] = lr * param_group["lr_scale"] | |
else: | |
param_group["lr"] = lr | |
return lr | |
def load_ckpt(weight_dir, model, map_location, args): | |
checkpoint = torch.load(weight_dir, map_location=map_location) | |
if args.resume: | |
resume_epoch = checkpoint['epoch'] | |
else: | |
resume_epoch = 0 | |
pre_weight = checkpoint['state_dict'] | |
new_pre_weight = OrderedDict() | |
# pre_weight =torch.jit.load(resume) | |
model_dict = model.state_dict() | |
new_model_dict = OrderedDict() | |
for k, v in pre_weight.items(): | |
new_k = k.replace('module.', '') if 'module' in k else k | |
# 针对batch_size=1 | |
# new_k = new_k.replace('1','2') if 'proj.1' in new_k else new_k | |
new_pre_weight[new_k] = v | |
# for k, v in model_dict.items(): | |
# new_k = k.replace('module.', '') if 'module' in k else k | |
# new_model_dict[new_k] = v | |
pre_weight = new_pre_weight # ["model_state"] | |
# pretrained_dict = {} | |
# t_n = 0 | |
# v_n = 0 | |
# for k, v in pre_weight.items(): | |
# t_n += 1 | |
# if k in new_model_dict: | |
# k = 'module.' + k if 'module' not in k else k | |
# v_n += 1 | |
# pretrained_dict[k] = v | |
# print(k) | |
# os._exit() | |
# print(f'{v_n}/{t_n} weights have been loaded!') | |
model_dict.update(pre_weight) | |
model.load_state_dict(model_dict, strict=False) | |
return model, resume_epoch | |
def load_ckpt_fpn(weight_dir, model, map_location): | |
pre_weight = torch.load(weight_dir, map_location=map_location)['state_dict'] | |
epoch = torch.load(weight_dir, map_location=map_location)['epoch'] | |
new_pre_weight = OrderedDict() | |
# pre_weight =torch.jit.load(resume) | |
model_dict = model.state_dict() | |
for k, v in pre_weight.items(): | |
new_k = k.replace('module.', '') if 'module' in k else k | |
# if not (new_k.startswith('FPN') or new_k.startswith('gap')): | |
new_pre_weight[new_k] = v | |
pre_weight = new_pre_weight | |
# ["model_state"] | |
model_dict.update(pre_weight) | |
model.load_state_dict(model_dict, strict=True) | |
return model, epoch | |
def load_ckpt_old(weight_dir, model, map_location): | |
pre_weight = torch.load(weight_dir, map_location=map_location)['state_dict'] | |
epoch = torch.load(weight_dir, map_location=map_location)['epoch'] | |
new_pre_weight = OrderedDict() | |
# pre_weight =torch.jit.load(resume) | |
model_dict = model.state_dict() | |
for k, v in pre_weight.items(): | |
new_k = k.replace('module.', '') if 'module' in k else k | |
if not (new_k.startswith('FPN') or new_k.startswith('gap')): | |
new_pre_weight[new_k] = v | |
pre_weight = new_pre_weight | |
# ["model_state"] | |
model_dict.update(pre_weight) | |
model.load_state_dict(model_dict, strict=False) | |
return model, epoch | |
def compare_ckpt(model1, model2): | |
V = dict() | |
for k, v in model1.items(): | |
if k.startswith('projT'): | |
V[k] = v | |
for k, v in model2.items(): | |
if k in sorted(V.keys()): | |
model2[k] = V[k] | |
return model2 |