File size: 14,634 Bytes
bb6012a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import os
import random
import numpy as np
from PIL import Image
from loguru import logger
import sys
import inspect
import math
import torch
import torch.distributed as dist
from collections import OrderedDict
from torch import nn

def init_random_seed(seed=None, device='cuda', rank=0, world_size=1):
    """Initialize random seed."""
    if seed is not None:
        return seed

    # Make sure all ranks share the same random seed to prevent
    # some potential bugs. Please refer to
    # https://github.com/open-mmlab/mmdetection/issues/6339
    seed = np.random.randint(2**31)
    if world_size == 1:
        return seed

    if rank == 0:
        random_num = torch.tensor(seed, dtype=torch.int32, device=device)
    else:
        random_num = torch.tensor(0, dtype=torch.int32, device=device)
    dist.broadcast(random_num, src=0)
    return random_num.item()

def set_random_seed(seed, deterministic=False):
    """Set random seed."""
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    if deterministic:
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

def worker_init_fn(worker_id, num_workers, rank, seed):
    # The seed of each worker equals to
    # num_worker * rank + worker_id + user_seed
    worker_seed = num_workers * rank + worker_id + seed
    np.random.seed(worker_seed)
    random.seed(worker_seed)

class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self, name, fmt=":f"):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        if self.name == "Lr":
            fmtstr = "{name}={val" + self.fmt + "}"
        else:
            fmtstr = "{name}={val" + self.fmt + "} ({avg" + self.fmt + "})"
        return fmtstr.format(**self.__dict__)

class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix

    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        logger.info("  ".join(entries))

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = "{:" + str(num_digits) + "d}"
        return "[" + fmt + "/" + fmt.format(num_batches) + "]"

def get_caller_name(depth=0):
    """

    Args:

        depth (int): Depth of caller conext, use 0 for caller depth.

        Default value: 0.



    Returns:

        str: module name of the caller

    """
    # the following logic is a little bit faster than inspect.stack() logic
    frame = inspect.currentframe().f_back
    for _ in range(depth):
        frame = frame.f_back

    return frame.f_globals["__name__"]

class StreamToLoguru:
    """

    stream object that redirects writes to a logger instance.

    """
    def __init__(self, level="INFO", caller_names=("apex", "pycocotools")):
        """

        Args:

            level(str): log level string of loguru. Default value: "INFO".

            caller_names(tuple): caller names of redirected module.

                Default value: (apex, pycocotools).

        """
        self.level = level
        self.linebuf = ""
        self.caller_names = caller_names

    def write(self, buf):
        full_name = get_caller_name(depth=1)
        module_name = full_name.rsplit(".", maxsplit=-1)[0]
        if module_name in self.caller_names:
            for line in buf.rstrip().splitlines():
                # use caller level log
                logger.opt(depth=2).log(self.level, line.rstrip())
        else:
            sys.__stdout__.write(buf)

    def flush(self):
        pass

def redirect_sys_output(log_level="INFO"):
    redirect_logger = StreamToLoguru(log_level)
    sys.stderr = redirect_logger
    sys.stdout = redirect_logger

def setup_logger(save_dir, filename="log.txt", mode="a"):
    """setup logger for training and testing.

    Args:

        save_dir(str): location to save log file

        distributed_rank(int): device rank when multi-gpu environment

        filename (string): log save name.

        mode(str): log file write mode, `append` or `override`. default is `a`.



    Return:

        logger instance.

    """
    loguru_format = (
        "<green>{time:YYYY-MM-DD HH:mm:ss}</green> | "
        "<level>{level: <8}</level> | "
        "<cyan>{name}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>")

    logger.remove()
    save_file = os.path.join(save_dir, filename)
    if mode == "o" and os.path.exists(save_file):
        os.remove(save_file)
    # only keep logger in rank0 process

    logger.add(
        sys.stderr,
        format=loguru_format,
        level="INFO",
        enqueue=True,
    )
    logger.add(save_file)

    # redirect stdout/stderr to loguru
    redirect_sys_output("INFO")

def trainMetric(pred, label):
    pred = torch.argmax(pred,dim = 1)
    prec = torch.sum(pred == label)

    return prec

# def compute_AP(predicted_probs, true_labels):
#     num_samples, num_classes = true_labels.shape
#
#     # 初始化用于存储每个类别的 AP 的列表
#     aps = []
#
#     for class_idx in range(num_classes):
#         class_true_labels = true_labels[:, class_idx]
#         class_similarity_scores = predicted_probs[:, class_idx]
#
#         # 获取按相似性分数排序后的样本索引
#         sorted_indices = torch.argsort(class_similarity_scores, descending=True)
#
#         # 计算累积精度和召回率
#         tp = 0
#         fp = 0
#         precision_at_rank = []
#         recall_at_rank = []
#
#         for rank, idx in enumerate(sorted_indices):
#             if class_true_labels[idx] == 1:
#                 tp += 1
#             else:
#                 fp += 1
#             precision = tp / (tp + fp)
#             recall = tp / torch.sum(class_true_labels)
#             precision_at_rank.append(precision)
#             recall_at_rank.append(recall)
#
#         # 计算平均精度(AP)通过计算曲线下的面积
#         precision_at_rank = torch.tensor(precision_at_rank)
#         recall_at_rank = torch.tensor(recall_at_rank)
#         ap = torch.trapz(precision_at_rank, recall_at_rank)
#
#         aps.append(ap)
#
#
#     return aps
def token_wise_similarity(rep1, rep2, mask=None, chunk_size=1024):
    batch_size1, n_token1, feat_dim = rep1.shape
    batch_size2, n_token2, _ = rep2.shape
    num_folds = math.ceil(batch_size2 / chunk_size)
    output = []
    for i in range(num_folds):
        rep2_seg = rep2[i * chunk_size:(i + 1) * chunk_size]
        out_i = rep1.reshape(-1, feat_dim) @ rep2_seg.reshape(-1, feat_dim).T
        out_i = out_i.reshape(batch_size1, n_token1, -1, n_token2).max(3)[0]
        if mask is None:
            out_i = out_i.mean(1)
        else:
            out_i = out_i.sum(1)
        output.append(out_i)
    output = torch.cat(output, dim=1)
    if mask is not None:
        output = output / mask.sum(1, keepdim=True).clamp_(min=1)
    return output

def compute_acc(logits, targets, topk=5):
    targets = targets.squeeze(1)
    p = logits.topk(topk, 1, True, True)[1]
    pred = logits.topk(topk, 1, True, True)[1]
    gt = targets[pred,:]

    a = gt.view(1, -1)

    # b = a.expand_as(pred)
    c = gt.eq(targets)
    correct = pred.eq(targets.view(1, -1).expand_as(pred)).contiguous()
    acc_1 = correct[:1].sum(0)
    acc_k = correct[:topk].sum(0)
    return acc_1, acc_k

def compute_mAP(predicted_probs, true_labels):
    aps = compute_AP(predicted_probs, true_labels)
    aps = [ap for ap in aps if not torch.isnan(ap)]
    mAP = torch.mean(torch.tensor(aps))
    return mAP

def compute_F1(predictions, labels, k_val=5):
    labels = labels.squeeze(1)
    idx = predictions.topk(dim=1, k=k_val)[1]
    predictions.fill_(0)
    predictions.scatter_(dim=1, index=idx, src=torch.ones(predictions.size(0), k_val).to(predictions.device))
    mask = predictions == 1
    TP = (labels[mask] == 1).sum().float()
    tpfp = mask.sum().float()
    tpfn = (labels == 1).sum().float()
    p = TP / tpfp
    r = TP/tpfn
    f1 = 2*p*r/(p+r)

    return f1, p, r

def compute_AP(predictions, labels):
    num_class = predictions.size(1)
    ap = torch.zeros(num_class).to(predictions.device)
    empty_class = 0
    for idx_cls in range(num_class):
        prediction = predictions[:, idx_cls]
        label = labels[:, idx_cls]
        mask = label.abs() == 1
        if (label > 0).sum() == 0:
            empty_class += 1
            continue
        binary_label = torch.clamp(label[mask], min=0, max=1)
        sorted_pred, sort_idx = prediction[mask].sort(descending=True)
        sorted_label = binary_label[sort_idx]
        tmp = (sorted_label == 1).float()
        tp = tmp.cumsum(0)
        fp = (sorted_label != 1).float().cumsum(0)
        num_pos = binary_label.sum()
        rec = tp/num_pos
        prec = tp/(tp+fp)
        ap_cls = (tmp*prec).sum()/num_pos
        ap[idx_cls].copy_(ap_cls)
    return ap, empty_class

def compute_ACG(predictions, labels, k_val=5):
    gt = labels.squeeze(1)
    idx = predictions.topk(dim=1, k=k_val)[1]
    pred = gt[idx, :]
    pred[pred == -1] = 0
    c = labels.eq(pred)  # common label
    r = c.sum(-1) # similarity level
    # acg
    acg = c.sum(-1).sum(-1) / k_val
    lg = torch.log1p(torch.arange(1, k_val+1, 1) ).to(r.device)
    # dcg
    dcg = (torch.pow(2, r) - 1) / lg
    ir, _ = r.sort(-1, descending=True)
    idcg = (torch.pow(2, ir) - 1) / lg
    idcg[idcg == 0] = 1e-6
    ndcg = dcg.sum(-1) / idcg.sum(-1)
    # map
    pos = r.clone()
    pos[pos != 0] = 1
    j = torch.arange(1, k_val + 1, 1).to(pos.device)
    P = torch.cumsum(pos, 1) / j
    Npos = torch.sum(pos, 1)
    Npos[Npos == 0] = 1
    AP = torch.sum(P * pos, 1)
    map = torch.sum(P * pos, 1) / Npos
    # wmap
    acgj = torch.cumsum(r, 1) / j
    wmap = torch.sum(acgj * pos, 1) / Npos



    return acg, ndcg, map, wmap

def compute_mAPw(predictions, labels, k_val=5):
    gt = labels.squeeze(1)
    idx = predictions.topk(dim=1, k=k_val)[1]
    pred = gt[idx, :]
    pred[pred == -1] = 0
    c = labels.eq(pred)
    r = c.sum(-1)
    pos = r.clone()
    pos[pos != 0] = 1
    P = torch.cumsum(pos) / torch.arange(1, k_val+1, 1)


def adjust_learning_rate(optimizer, epoch, args):
    """Decay the learning rate with half-cycle cosine after warmup"""
    if epoch < args.warmup_epochs:
        lr = args.base_lr * epoch / args.warmup_epochs
    else:
        lr = args.min_lr + (args.base_lr - args.min_lr) * 0.5 * \
            (1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
    for param_group in optimizer.param_groups:
        if "lr_scale" in param_group:
            param_group["lr"] = lr * param_group["lr_scale"]
        else:
            param_group["lr"] = lr
    return lr

def load_ckpt(weight_dir, model, map_location, args):
    checkpoint = torch.load(weight_dir, map_location=map_location)
    if args.resume:
        resume_epoch = checkpoint['epoch']
    else:
        resume_epoch = 0
    pre_weight = checkpoint['state_dict']

    new_pre_weight = OrderedDict()
    # pre_weight =torch.jit.load(resume)
    model_dict = model.state_dict()
    new_model_dict = OrderedDict()
    for k, v in pre_weight.items():
        new_k = k.replace('module.', '') if 'module' in k else k
        # 针对batch_size=1
        # new_k = new_k.replace('1','2') if 'proj.1' in new_k else new_k
        new_pre_weight[new_k] = v
    # for k, v in model_dict.items():
    #     new_k = k.replace('module.', '') if 'module' in k else k
    #     new_model_dict[new_k] = v
    pre_weight = new_pre_weight  # ["model_state"]
    # pretrained_dict = {}
    # t_n = 0
    # v_n = 0
    # for k, v in pre_weight.items():
    #     t_n += 1
    #     if k in new_model_dict:
    #         k = 'module.' + k if 'module' not in k else k
    #         v_n += 1
    #         pretrained_dict[k] = v
            # print(k)
    # os._exit()
    # print(f'{v_n}/{t_n} weights have been loaded!')
    model_dict.update(pre_weight)
    model.load_state_dict(model_dict, strict=False)

    return model, resume_epoch

def load_ckpt_fpn(weight_dir, model, map_location):

    pre_weight = torch.load(weight_dir, map_location=map_location)['state_dict']
    epoch = torch.load(weight_dir, map_location=map_location)['epoch']
    new_pre_weight = OrderedDict()
    # pre_weight =torch.jit.load(resume)
    model_dict = model.state_dict()

    for k, v in pre_weight.items():
        new_k = k.replace('module.', '') if 'module' in k else k
        # if not (new_k.startswith('FPN') or new_k.startswith('gap')):
        new_pre_weight[new_k] = v

    pre_weight = new_pre_weight
    # ["model_state"]
    model_dict.update(pre_weight)
    model.load_state_dict(model_dict, strict=True)

    return model, epoch
def load_ckpt_old(weight_dir, model, map_location):

    pre_weight = torch.load(weight_dir, map_location=map_location)['state_dict']
    epoch = torch.load(weight_dir, map_location=map_location)['epoch']
    new_pre_weight = OrderedDict()
    # pre_weight =torch.jit.load(resume)
    model_dict = model.state_dict()

    for k, v in pre_weight.items():
        new_k = k.replace('module.', '') if 'module' in k else k
        if not (new_k.startswith('FPN') or new_k.startswith('gap')):
            new_pre_weight[new_k] = v

    pre_weight = new_pre_weight
    # ["model_state"]
    model_dict.update(pre_weight)
    model.load_state_dict(model_dict, strict=False)

    return model, epoch

def compare_ckpt(model1, model2):
    V = dict()
    for k, v in model1.items():
        if k.startswith('projT'):
            V[k] = v

    for k, v in model2.items():
        if k in sorted(V.keys()):
            model2[k] = V[k]

    return model2