Spaces:
Sleeping
Sleeping
File size: 11,163 Bytes
bb6012a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import torch
from torch.autograd import Variable
import numpy as np
import torch.nn as nn
from torch.nn import functional as F
import math
def init_hash(dataloader, args):
dataset_size = len(dataloader.dataset)
B = torch.randn(dataset_size, args.hash_dim).sign().cuda(non_blocking=True)
H = torch.zeros(dataset_size, args.hash_dim).sign().cuda(non_blocking=True)
Hi = torch.zeros(dataset_size, args.hash_dim).sign().cuda(non_blocking=True)
Ht = torch.zeros(dataset_size, args.hash_dim).sign().cuda(non_blocking=True)
return B, H, Hi, Ht
def GenerateCode(model, data_loader, args):
num_data = len(data_loader.dataset)
B = np.zeros([num_data, args.hash_dim], dtype=np.float32)
Bi = np.zeros([num_data, args.hash_dim], dtype=np.float32)
Bt = np.zeros([num_data, args.hash_dim], dtype=np.float32)
for i, (idx, image, text, label, target) in enumerate(data_loader, 0):
image = image.cuda(non_blocking = True)
text = text.cuda(non_blocking = True)
img_hash, txt_hash, output, output_s = model(image, text)
B[idx, :] = torch.sign(output.detach().cpu()).numpy()
Bi[idx, :] = torch.sign(img_hash.detach().cpu()).numpy()
Bt[idx, :] = torch.sign(txt_hash.detach().cpu()).numpy()
return B, Bi, Bt
def CalcSim(batch_label, train_label):
S = (batch_label.mm(train_label.t()) > 0)
return S
# loss
def Logtrick(x):
lt = torch.log(1+torch.exp(-torch.abs(x))).cuda() + torch.max(x, Variable(torch.FloatTensor([0.]).cuda()))
return lt
class NTXentLoss(nn.Module):
"""
Normalized Temperature-scaled Cross-entropy Loss (NTXent Loss).
Contains single-modal and cross-modal implementations.
"""
def __init__(self, temperature=1, eps=1e-6):
super(NTXentLoss, self).__init__()
self.temperature = temperature
self.eps = eps
def forward(self, *args, type='orig'):
if type == 'cross':
return self.forward_cross_modal(*args)
if type == 'orig':
return self.forward_orig(*args)
if type == 'both':
return self.forward_orig(*args), self.forward_cross_modal(*args)
else:
raise Exception("Wrong NTXent loss type, must be: 'cross', 'orig' or 'both'")
def forward_cross_modal(self, mod1, mod2):
"""
Cross-modal case:
p - positive pair
n - negative pair
sim - cosine similarity
ix - image modality feature number x
tx - text modality feature number x
Cross-modal case of NTXent doesn't consider similarities inside of the same modality
Similarities matrix: exp(sim(i, y))
+--+--+--+--+--+--+--+
| |i1|i2|i3|t1|t2|t3|
Modality +--+--+--+--+--+--+--+
Features |i1|0 |0 |0 |p |n |n |
+--+ +--+ +--+--+--+--+--+--+--+
|i1| |t1| |i2|0 |0 |0 |n |p |n |
+--+ +--+ +--+--+--+--+--+--+--+
|i2| |t2| ------> |i3|0 |0 |0 |n |n |p |
+--+ +--+ +--+--+--+--+--+--+--+
|i3| |t3| |t1|p |n |n |0 |0 |0 |
+--+ +--+ +--+--+--+--+--+--+--+
|t2|n |p |n |0 |0 |0 |
+--+--+--+--+--+--+--+
|t3|n |n |p |0 |0 |0 |
+--+--+--+--+--+--+--+
:param: mod1: features of the 1st modality
:param: mod1: features of the 2nd modality
:return: NTXent loss
"""
# normalize for numerical stability
mod1 = F.normalize(mod1)
mod2 = F.normalize(mod2)
out = torch.cat([mod1, mod2], dim=0)
# cov and sim: [2 * batch_size, 2 * batch_size * world_size]
cov = torch.mm(out, out.t().contiguous()) # cosine similarities matrix
sim = torch.exp(cov / self.temperature)
# mask for cross-modal case, nullifies certain regions (see docstring)
zeros = torch.zeros(mod1.shape[0], mod1.shape[0]).to(sim.device)
ones = torch.ones(mod1.shape[0], mod1.shape[0]).to(sim.device)
mask = torch.hstack([torch.vstack([zeros, ones]), torch.vstack([ones, zeros])]).to(sim.device)
sim = sim * mask
# neg: [2 * batch_size]
# negative pairs sum
neg = sim.sum(dim=1)
# Positive similarity, pos becomes [2 * batch_size]
pos = torch.exp(torch.sum(mod1 * mod2, dim=-1) / self.temperature)
pos = torch.cat([pos, pos], dim=0)
loss = -torch.log(pos / (neg + self.eps)).sum()
return loss
def forward_orig(self, out_1, out_2):
"""
Implementation taken from:
https://github.com/PyTorchLightning/lightning-bolts/blob/master/pl_bolts/models/self_supervised/simclr/simclr_module.py
p - positive pair
n - negative pair
sim - cosine similarity
e - Euler's number
ix - value x of input feature vector i
tx - value x of input feature vector t
Similarities matrix: exp(sim(i, y))
+--+--+--+--+--+--+--+
| |i1|i2|i3|t1|t2|t3|
Modality +--+--+--+--+--+--+--+
Features |i1|e |n |n |p |n |n |
+--+ +--+ +--+--+--+--+--+--+--+
|i1| |t1| |i2|n |e |n |n |p |n |
+--+ +--+ +--+--+--+--+--+--+--+
|i2| |t2| ------> |i3|n |n |e |n |n |p |
+--+ +--+ +--+--+--+--+--+--+--+
|i3| |t3| |t1|p |n |n |e |n |n |
+--+ +--+ +--+--+--+--+--+--+--+
|t2|n |p |n |n |e |n |
+--+--+--+--+--+--+--+
|t3|n |n |p |n |n |e |
+--+--+--+--+--+--+--+
:param out_1: input feature vector i
:param out_2: input feature vector t
:return: NTXent loss
"""
out_1 = F.normalize(out_1)
out_2 = F.normalize(out_2)
out = torch.cat([out_1, out_2], dim=0)
# cov and sim: [2 * batch_size, 2 * batch_size * world_size]
# neg: [2 * batch_size]
cov = torch.mm(out, out.t().contiguous())
sim = torch.exp(cov / self.temperature)
neg = sim.sum(dim=-1)
# from each row, subtract e^1 to remove similarity measure for x1.x1
row_sub = torch.Tensor(neg.shape).fill_(math.e).to(neg.device)
neg = torch.clamp(neg - row_sub, min=self.eps) # clamp for numerical stability
# Positive similarity, pos becomes [2 * batch_size]
o = out_1 * out_2
pos = torch.exp(torch.sum(out_1 * out_2, dim=-1) / self.temperature)
pos = torch.cat([pos, pos], dim=0)
loss = -torch.log(pos / (neg + self.eps)).mean()
return loss
"""
out_hash: real-value code
H: total real-value code
Bbatch: batch hash code
S: similarity
num_train: number of train
num_batch: batchsize
"""
def Calcloss(out_hash, H, Bbatch, S, num_train, num_batch, args):
theta_x = out_hash.float().mm(Variable(H.cuda()).t()) / 2
logloss = (Variable(S.cuda()) * theta_x - Logtrick(theta_x)).sum() \
/ (num_train * num_batch)
regterm = (Bbatch - out_hash).pow(2).sum() / (num_train * num_batch)
loss_p = - logloss + args.lamda * regterm
return logloss, regterm, loss_p
def CalcNTXentLoss(img_hash, txt_hash, out_hash, Criterion, args):
"""
Calculate NTXent Loss
:param: h_img1: batch of image hashes #1 (original)
:param: h_img2: batch of image hashes #2 (augmented)
:param: h_txt1: batch of text hashes #1 (original)
:param: h_txt2: batch of text hashes #2 (augmented)
:returns: NTXent Loss
"""
loss_ntxent_inter1 = Criterion(img_hash, txt_hash, type='cross')
loss_ntxent_inter2 = Criterion(img_hash, out_hash, type='orig')
loss_ntxent_inter3 = Criterion(out_hash, txt_hash, type='orig')
# loss_ntxent_intra = Criterion(out_hash, out_hash, type='orig') * args.contrastive_weights[1]
loss_ntxent = loss_ntxent_inter1 * args.contrastive[0] + loss_ntxent_inter2 * args.contrastive[1] + loss_ntxent_inter3 * args.contrastive[2]
return loss_ntxent
def Calc_total_loss(H, B, S, num_train, args):
theta = H.mm(H.t()) / 2
t1 = (theta*theta).sum() / (num_train * num_train)
logloss = (- theta * S + Logtrick(Variable(theta)).data).sum()
regterm = (H - B).pow(2).sum()
loss_p = logloss + args.lamda * regterm
return logloss, regterm, loss_p
def CalcHammingDist(B1, B2):
q = B2.shape[1]
distH = 0.5 * (q - np.dot(B1, B2.transpose()))
return distH
def CalcMap(qB, rB, queryL, retrievalL):
# qB: m, q
# rB: n, q
# queryL: {0,1}^{mxl}
# retrievalL: {0,1}^{nxl}
num_query = queryL.shape[0]
map = 0
# print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
for iter in range(num_query):
# 标签匹配
gnd = (np.dot(queryL[iter, :], retrievalL.transpose()) > 0).astype(np.float32)
tsum = np.sum(gnd)
if tsum == 0:
continue
# 计算query 与 database之间的汉明距离
hamm = CalcHammingDist(qB[iter, :], rB)
# 排序
ind = np.argsort(hamm)
# 汉明距离与标签对应
gnd = gnd[ind]
count = np.linspace(1, int(tsum), int(tsum))
# 按照结果排序比对是否标签一致,并返回一致的坐标
tindex = np.asarray(np.where(gnd == 1)) + 1.0
map_ = np.mean(count / (tindex))
# print(map_)
map = map + map_
map = map / num_query
# print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
return map
def CalcTopMap(qB, rB, queryL, retrievalL, topk = 20):
# qB: {-1,+1}^{mxq}
# rB: {-1,+1}^{nxq}
# queryL: {0,1}^{mxl}
# retrievalL: {0,1}^{nxl}
num_query = queryL.shape[0]
topkmap = 0
# print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
for iter in range(num_query):
gnd = (np.dot(queryL[iter, :], retrievalL.transpose()) > 0).astype(np.float32)
hamm = CalcHammingDist(qB[iter, :], rB)
ind = np.argsort(hamm)
gnd = gnd[ind]
tgnd = gnd[0:topk]
tsum = np.sum(tgnd)
if tsum == 0:
continue
count = np.linspace(1, int(tsum), int(tsum))
tindex = np.asarray(np.where(tgnd == 1)) + 1.0
topkmap_ = np.mean(count / (tindex))
# print(topkmap_)
topkmap = topkmap + topkmap_
topkmap = topkmap / num_query
# print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
return topkmap |