Spaces:
Sleeping
Sleeping
File size: 16,215 Bytes
bb6012a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import os
from typing import List, Union
import random
import json
import numpy as np
from PIL import Image
import torch
from torch.utils.data import Dataset
from torchvision import transforms
from loguru import logger
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
_tokenizer = _Tokenizer()
# text_tokenize = AutoTokenizer.from_pretrained("./Taiyi-CLIP-s", model_max_length=512)
def tokenize(texts: Union[str, List[str]],
context_length: int = 77,
truncate: bool = False) -> torch.LongTensor:
"""
Returns the tokenized representation of given input string(s)
Parameters
----------
texts : Union[str, List[str]]
An input string or a list of input strings to tokenize
context_length : int
The context length to use; all CLIP models use 77 as the context length
truncate: bool
Whether to truncate the text in case its encoding is longer than the context length
Returns
-------
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
"""
if isinstance(texts, str):
texts = [texts]
sot_token = _tokenizer.encoder["<|startoftext|>"]
eot_token = _tokenizer.encoder["<|endoftext|>"]
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token]
for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
if truncate:
tokens = tokens[:context_length]
tokens[-1] = eot_token
else:
raise RuntimeError(
f"Input {texts[i]} is too long for context length {context_length}"
)
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def select_idxs(seq_length, n_to_select, n_from_select, seed=42):
"""
Select n_to_select indexes from each consequent n_from_select indexes from range with length seq_length, split
selected indexes to separate arrays
Example:
seq_length = 20
n_from_select = 5
n_to_select = 2
input, range of length seq_length:
range = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
sequences of length n_from_select:
sequences = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]
selected n_to_select elements from each sequence
selected = [[0, 4], [7, 9], [13, 14], [16, 18]]
output, n_to_select lists of length seq_length / n_from_select:
output = [[0, 7, 13, 16], [4, 9, 14, 18]]
:param seq_length: length of sequence, say 10
:param n_to_select: number of elements to select
:param n_from_select: number of consequent elements
:return:
"""
random.seed(seed)
idxs = [[] for _ in range(n_to_select)]
for i in range(seq_length // n_from_select):
ints = random.sample(range(n_from_select), n_to_select)
for j in range(n_to_select):
idxs[j].append(i * n_from_select + ints[j])
return idxs
def read_json(file_name, suppress_console_info=False):
"""
Read JSON
:param file_name: input JSON path
:param suppress_console_info: toggle console printing
:return: dictionary from JSON
"""
with open(file_name, 'r') as f:
data = json.load(f)
if not suppress_console_info:
print("Read from:", file_name)
return data
def get_image_file_names(data, suppress_console_info=False):# ok
"""
Get list of image file names
:param data: original data from JSON
:param suppress_console_info: toggle console printing
:return: list of strings (file names)
"""
file_names = []
for img in data['images']:
image_name = img["image_name"]
sample_id = img["sample_id"]
path_data = f'{sample_id}/{image_name}'
file_names.append(path_data)
if not suppress_console_info:
print("Total number of files:", len(file_names))
return file_names
def get_images(file_names, args):
transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
imgs = []
for i in range(len(file_names)):
img = np.array(transform(Image.open(os.path.join(args.imgs_folder, file_names[i]))))
imgs.append(img)
return np.array(imgs)
def get_captions(data, suppress_console_info=False):
"""
Get list of formatted captions
:param data: original data from JSON
:return: list of strings (captions)
"""
def format_caption(string):
return string.replace('.', '').replace(',', '').replace('!', '').replace('?', '').lower()
captions = []
augmented_captions_rb = []
augmented_captions_bt_prob = []
augmented_captions_bt_chain = []
for img in data['images']:
for sent in img['sentences']:
captions.append(format_caption(sent['raw']))
try:
augmented_captions_rb.append(format_caption(sent['aug_rb']))
except:
pass
try:
augmented_captions_bt_prob.append(format_caption(sent['aug_bt_prob']))
except:
pass
try:
augmented_captions_bt_chain.append(format_caption(sent['aug_bt_chain']))
except:
pass
if not suppress_console_info:
logger.info("Total number of captions:{}", len(captions))
logger.info("Total number of augmented captions RB:{}", len(augmented_captions_rb))
logger.info("Total number of augmented captions BT (prob):{}", len(augmented_captions_bt_prob))
logger.info("Total number of augmented captions BT (chain):{}", len(augmented_captions_bt_chain))
return captions, augmented_captions_rb, augmented_captions_bt_prob, augmented_captions_bt_chain
def get_labels(data, suppress_console_info=False):
"""
Get list of labels
:param data: original data from JSON
:param suppress_console_info: toggle console printing
:return: list ints (labels)
"""
labels = []
for img in data['images']:
labels.append(img["classcode"])
if not suppress_console_info:
print("Total number of labels:", len(labels))
return labels
def remove_tokens(data):
"""
Removes 'tokens' key from caption record, if exists; halves the size of the file
:param data: original data
:return: data without tokens
"""
for img in data['images']:
for sent in img['sentences']:
try:
sent.pop("tokens")
except:
pass
return data
def write_json(file_name, data):
"""
Write dictionary to JSON file
:param file_name: output path
:param data: dictionary
:return: None
"""
bn = os.path.basename(file_name)
dn = os.path.dirname(file_name)
name, ext = os.path.splitext(bn)
file_name = os.path.join(dn, name + '.json')
with open(file_name, 'w') as f:
f.write(json.dumps(data, indent='\t'))
print("Written to:", file_name)
def get_split_idxs(arr_len, args):
"""
Get indexes for training, query and db subsets
:param: arr_len: array length
:return: indexes for training, query and db subsets
"""
idx_all = list(range(arr_len))
idx_train, idx_eval = split_indexes(idx_all, args.dataset_train_split)
idx_query, idx_db = split_indexes(idx_eval, args.dataset_query_split)
return idx_train, idx_eval, idx_query, idx_db
def split_indexes(idx_all, split):
"""
Splits list in two parts.
:param idx_all: array to split
:param split: portion to split
:return: splitted lists
"""
idx_length = len(idx_all)
selection_length = int(idx_length * split)
idx_selection = sorted(random.sample(idx_all, selection_length))
idx_rest = sorted(list(set(idx_all).difference(set(idx_selection))))
return idx_selection, idx_rest
def get_caption_idxs(idx_train, idx_query, idx_db):
"""
Get caption indexes.
:param: idx_train: train image (and label) indexes
:param: idx_query: query image (and label) indexes
:param: idx_db: db image (and label) indexes
:return: caption indexes for corresponding index sets
"""
idx_train_cap = get_caption_idxs_from_img_idxs(idx_train, num=5)
idx_query_cap = get_caption_idxs_from_img_idxs(idx_query, num=5)
idx_db_cap = get_caption_idxs_from_img_idxs(idx_db)
return idx_train_cap, idx_query_cap, idx_db_cap
def get_caption_idxs_from_img_idxs(img_idxs, num=5):
"""
Get caption indexes. There are 5 captions for each image (and label).
Say, img indexes - [0, 10, 100]
Then, caption indexes - [0, 1, 2, 3, 4, 50, 51, 52, 53, 54, 100, 501, 502, 503, 504]
:param: img_idxs: image (and label) indexes
:return: caption indexes
"""
caption_idxs = []
for idx in img_idxs:
for i in range(num): # each image has 5 captions
caption_idxs.append(idx * num + i)
return caption_idxs
def split_data(images, captions, labels, captions_aug, images_aug, args):
"""
Split dataset to get training, query and db subsets
:param: images: image embeddings array
:param: captions: caption embeddings array
:param: labels: labels array
:param: captions_aug: augmented caption embeddings
:param: images_aug: augmented image embeddings
:return: tuples of (images, captions, labels), each element is array
"""
idx_tr, idx_q, idx_db = get_split_idxs(len(images), args)
idx_tr_cap, idx_q_cap, idx_db_cap = get_caption_idxs(idx_tr, idx_q, idx_db)
train = images[idx_tr], captions[idx_tr_cap], labels[idx_tr], (idx_tr, idx_tr_cap), captions_aug[idx_tr_cap], \
images_aug[idx_tr]
query = images[idx_q], captions[idx_q_cap], labels[idx_q], (idx_q, idx_q_cap), captions_aug[idx_q_cap], \
images_aug[idx_q]
db = images[idx_db], captions[idx_db_cap], labels[idx_db], (idx_db, idx_db_cap), captions_aug[idx_db_cap], \
images_aug[idx_db]
return train, query, db
def select_idxs(seq_length, n_to_select, n_from_select, seed=42):
"""
Select n_to_select indexes from each consequent n_from_select indexes from range with length seq_length, split
selected indexes to separate arrays
Example:
seq_length = 20
n_from_select = 5
n_to_select = 2
input, range of length seq_length:
range = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
sequences of length n_from_select:
sequences = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]
selected n_to_select elements from each sequence
selected = [[0, 4], [7, 9], [13, 14], [16, 18]]
output, n_to_select lists of length seq_length / n_from_select:
output = [[0, 7, 13, 16], [4, 9, 14, 18]]
:param seq_length: length of sequence, say 10
:param n_to_select: number of elements to select
:param n_from_select: number of consequent elements
:return:
"""
random.seed(seed)
idxs = [[] for _ in range(n_to_select)]
for i in range(seq_length // n_from_select):
ints = random.sample(range(n_from_select), n_to_select)
for j in range(n_to_select):
idxs[j].append(i * n_from_select + ints[j])
return idxs
class AbstractDataset(torch.utils.data.Dataset):
def __init__(self, images, captions, labels, targets, idxs):
self.image_replication_factor = 1 # default value, how many times we need to replicate image
self.images = images
self.captions = captions
self.labels = labels
self.targets = targets
self.idxs = np.array(idxs[0])
def __getitem__(self, index):
return
def __len__(self):
return
class CISENDataset(torch.utils.data.Dataset):
"""
Class for dataset representation.
Each image has 5 corresponding captions
Duplet dataset sample - img-txt (image and corresponding caption)
"""
def __init__(self, images, captions, args):
"""
Initialization.
:param images: image embeddings vector
:param captions: captions embeddings vector
:param labels: labels vector
"""
super().__init__()
self.images = images
self.captions = captions
# self.targets = targets
# self.labels = labels
self.word_len = args.word_len
def __getitem__(self, index):
"""
Returns a tuple (img, txt, label) - image and corresponding caption
:param index: index of sample
:return: tuple (img, txt, label)
"""
return (
torch.from_numpy(self.images[index].astype('float32')),
torch.from_numpy(np.array(tokenize(self.captions[index], self.word_len).squeeze(0)).astype('int64'))
# ,torch.from_numpy(self.targets[index])
)
def __len__(self):
return len(self.images)
class DatasetDuplet(AbstractDataset):
"""
Class for dataset representation.
Each image has 5 corresponding captions
Duplet dataset sample - img-txt (image and corresponding caption)
"""
def __init__(self, images, captions, labels, targets, idxs, args):
"""
Initialization.
:param images: image embeddings vector
:param captions: captions embeddings vector
:param labels: labels vector
"""
super().__init__(images, captions, labels, targets, idxs)
self.word_len = args.word_len
def __getitem__(self, index):
"""
Returns a tuple (img, txt, label) - image and corresponding caption
:param index: index of sample
:return: tuple (img, txt, label)
"""
return (
index,
torch.from_numpy(self.images[index].astype('float32')),
torch.from_numpy(np.array(tokenize(self.captions[index] + self.captions[index], self.word_len).squeeze(0)).astype('int64')),
self.labels[index],
self.targets[index]
)
def __len__(self):
return len(self.images)
class ModifiedDatasetDuplet(AbstractDataset):
"""
Class for dataset representation.
Each image has 5 corresponding captions
Duplet dataset sample - img-txt (image and corresponding caption)
"""
def __init__(self, images, captions, labels, targets, idxs, args):
"""
Initialization.
:param images: image embeddings vector
:param captions: captions embeddings vector
:param labels: labels vector
"""
super().__init__(images, captions, labels, targets, idxs)
def __getitem__(self, index):
"""
Returns a tuple (img, txt, label) - image and corresponding caption
:param index: index of sample
:return: tuple (img, txt, label)
"""
text = text_tokenize(self.captions[index], return_tensors='pt', padding='max_length', truncation='longest_first')['input_ids']
return (
index,
torch.from_numpy(self.images[index].astype('float32')),
torch.from_numpy(np.array(text_tokenize(self.captions[index], return_tensors='pt', padding='max_length', truncation='longest_first')['input_ids']).astype('int64')),
self.labels[index],
self.targets[index]
)
def __len__(self):
return len(self.images) |