File size: 26,291 Bytes
bb6012a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
# import open_clip

def conv_layer(in_dim, out_dim, kernel_size=1, padding=0, stride=1):
    return nn.Sequential(
        nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
        nn.BatchNorm2d(out_dim), nn.ReLU(True))
    # return nn.Sequential(
    #     nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
    #     nn.LayerNorm(out_dim), nn.ReLU(True))


# def conv_layer_1(in_dim, out_dim, kernel_size=1, padding=0, stride=1):
#     return nn.Sequential(
#         nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
#         nn.LayerNorm(out_dim), nn.ReLU(True))

def linear_layer(in_dim, out_dim,bias=False):
    return nn.Sequential(nn.Linear(in_dim, out_dim, bias),
                         nn.BatchNorm1d(out_dim), nn.ReLU(True))
    # return nn.Sequential(nn.Linear(in_dim, out_dim, bias),
    #                      nn.LayerNorm(out_dim), nn.ReLU(True))
class AttentionPool2d(nn.Module):
    def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
        super().__init__()
        self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

    def forward(self, x):
        x = x.flatten(start_dim=2).permute(2, 0, 1)  # NCHW -> (HW)NC
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (HW+1)NC
        x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (HW+1)NC
        x, _ = F.multi_head_attention_forward(
            query=x[:1], key=x, value=x,
            embed_dim_to_check=x.shape[-1],
            num_heads=self.num_heads,
            q_proj_weight=self.q_proj.weight,
            k_proj_weight=self.k_proj.weight,
            v_proj_weight=self.v_proj.weight,
            in_proj_weight=None,
            in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
            bias_k=None,
            bias_v=None,
            add_zero_attn=False,
            dropout_p=0,
            out_proj_weight=self.c_proj.weight,
            out_proj_bias=self.c_proj.bias,
            use_separate_proj_weight=True,
            training=self.training,
            need_weights=False
        )
        return x.squeeze(0)

# class AttentionPool2d(nn.Module):
#     def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
#         super().__init__()
#         self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
#         self.k_proj = nn.Linear(embed_dim, embed_dim)
#         self.q_proj = nn.Linear(embed_dim, embed_dim)
#         self.v_proj = nn.Linear(embed_dim, embed_dim)
#         self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
#         self.num_heads = num_heads
#
#     def forward(self, x):
#         x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1)  # NCHW -> (HW)NC
#         x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (HW+1)NC
#         x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (HW+1)NC
#         x, _ = F.multi_head_attention_forward(
#             query=x, key=x, value=x,
#             embed_dim_to_check=x.shape[-1],
#             num_heads=self.num_heads,
#             q_proj_weight=self.q_proj.weight,
#             k_proj_weight=self.k_proj.weight,
#             v_proj_weight=self.v_proj.weight,
#             in_proj_weight=None,
#             in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
#             bias_k=None,
#             bias_v=None,
#             add_zero_attn=False,
#             dropout_p=0,
#             out_proj_weight=self.c_proj.weight,
#             out_proj_bias=self.c_proj.bias,
#             use_separate_proj_weight=True,
#             training=self.training,
#             need_weights=False
#         )
#
#         return x[0]

class CoordConv(nn.Module):
    def __init__(self,

                 in_channels,

                 out_channels,

                 kernel_size=3,

                 padding=1,

                 stride=1):
        super().__init__()
        self.conv1 = conv_layer(in_channels + 2, out_channels, kernel_size,
                                padding, stride)

    def add_coord(self, input):
        b, _, h, w = input.size()
        x_range = torch.linspace(-1, 1, w, device=input.device)
        y_range = torch.linspace(-1, 1, h, device=input.device)
        y, x = torch.meshgrid(y_range, x_range)
        y = y.expand([b, 1, -1, -1])
        x = x.expand([b, 1, -1, -1])
        coord_feat = torch.cat([x, y], 1)
        input = torch.cat([input, coord_feat], 1)
        return input

    def forward(self, x):
        x = self.add_coord(x)
        x = self.conv1(x)
        return x

class TransformerDecoder(nn.Module):
    def __init__(self,

                 num_layers,

                 d_model,

                 nhead,

                 dim_ffn,

                 dropout,

                 return_intermediate=False):
        super().__init__()
        self.layers = nn.ModuleList([
            TransformerDecoderLayer(d_model=d_model,
                                    nhead=nhead,
                                    dim_feedforward=dim_ffn,
                                    dropout=dropout) for _ in range(num_layers)
        ])
        self.num_layers = num_layers
        self.norm = nn.LayerNorm(d_model)
        self.return_intermediate = return_intermediate

    @staticmethod
    def pos1d(d_model, length):
        """

        :param d_model: dimension of the model

        :param length: length of positions

        :return: length*d_model position matrix

        """
        if d_model % 2 != 0:
            raise ValueError("Cannot use sin/cos positional encoding with "
                             "odd dim (got dim={:d})".format(d_model))
        pe = torch.zeros(length, d_model)
        position = torch.arange(0, length).unsqueeze(1)
        div_term = torch.exp((torch.arange(0, d_model, 2, dtype=torch.float) *
                              -(math.log(10000.0) / d_model)))
        pe[:, 0::2] = torch.sin(position.float() * div_term)
        pe[:, 1::2] = torch.cos(position.float() * div_term)

        return pe.unsqueeze(1)  # n, 1, 512

    @staticmethod
    def pos2d(d_model, height, width):
        """

        :param d_model: dimension of the model

        :param height: height of the positions

        :param width: width of the positions

        :return: d_model*height*width position matrix

        """
        if d_model % 4 != 0:
            raise ValueError("Cannot use sin/cos positional encoding with "
                             "odd dimension (got dim={:d})".format(d_model))
        pe = torch.zeros(d_model, height, width)
        # Each dimension use half of d_model
        d_model = int(d_model / 2)
        div_term = torch.exp(
            torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
        pos_w = torch.arange(0., width).unsqueeze(1)
        pos_h = torch.arange(0., height).unsqueeze(1)
        pe[0:d_model:2, :, :] = torch.sin(pos_w * div_term).transpose(
            0, 1).unsqueeze(1).repeat(1, height, 1)
        pe[1:d_model:2, :, :] = torch.cos(pos_w * div_term).transpose(
            0, 1).unsqueeze(1).repeat(1, height, 1)
        pe[d_model::2, :, :] = torch.sin(pos_h * div_term).transpose(
            0, 1).unsqueeze(2).repeat(1, 1, width)
        pe[d_model + 1::2, :, :] = torch.cos(pos_h * div_term).transpose(
            0, 1).unsqueeze(2).repeat(1, 1, width)

        return pe.reshape(-1, 1, height * width).permute(2, 1, 0)  # hw, 1, 512

    def forward(self, vis, txt, pad_mask):
        '''

            vis: b, 512, h, w

            txt: b, L, 512

            pad_mask: b, L

        '''
        B, C, H, W = vis.size()
        _, L, D = txt.size()
        # position encoding
        vis_pos = self.pos2d(C, H, W)
        txt_pos = self.pos1d(D, L)
        # reshape & permute
        vis = vis.reshape(B, C, -1).permute(2, 0, 1)
        txt = txt.permute(1, 0, 2)
        # forward
        output = vis
        intermediate = []
        for layer in self.layers:
            output = layer(output, txt, vis_pos, txt_pos, pad_mask)
            if self.return_intermediate:
                # HW, b, 512 -> b, 512, HW
                intermediate.append(self.norm(output).permute(1, 2, 0))

        if self.norm is not None:
            # HW, b, 512 -> b, 512, HW
            output = self.norm(output).permute(1, 2, 0)
            if self.return_intermediate:
                intermediate.pop()
                intermediate.append(output)
                # [output1, output2, ..., output_n]
                return intermediate
            else:
                # b, 512, HW
                return output
        return output


class TransformerDecoderLayer(nn.Module):
    def __init__(self,

                 d_model=512,

                 nhead=9,

                 dim_feedforward=2048,

                 dropout=0.1):
        super().__init__()
        # Normalization Layer
        self.self_attn_norm = nn.LayerNorm(d_model)
        self.cross_attn_norm = nn.LayerNorm(d_model)
        # Attention Layer
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.multihead_attn = nn.MultiheadAttention(d_model,
                                                    nhead,
                                                    dropout=dropout,
                                                    kdim=d_model,
                                                    vdim=d_model)
        # FFN
        self.ffn = nn.Sequential(nn.Linear(d_model, dim_feedforward),
                                 nn.ReLU(True), nn.Dropout(dropout),
                                 nn.LayerNorm(dim_feedforward),
                                 nn.Linear(dim_feedforward, d_model))
        # LayerNorm & Dropout
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

    def with_pos_embed(self, tensor, pos):
        return tensor if pos is None else tensor + pos.to(tensor.device)

    def forward(self, vis, txt, vis_pos, txt_pos, pad_mask):
        '''

            vis: 26*26, b, 512

            txt: L, b, 512

            vis_pos: 26*26, 1, 512

            txt_pos: L, 1, 512

            pad_mask: b, L

        '''
        # Self-Attention
        vis2 = self.norm1(vis)
        q = k = self.with_pos_embed(vis2, vis_pos)
        vis2 = self.self_attn(q, k, value=vis2)[0]
        vis2 = self.self_attn_norm(vis2)
        vis = vis + self.dropout1(vis2)
        # Cross-Attention
        vis2 = self.norm2(vis)
        vis2 = self.multihead_attn(query=self.with_pos_embed(vis2, vis_pos),
                                   key=self.with_pos_embed(txt, txt_pos),
                                   value=txt,
                                   key_padding_mask=pad_mask)[0]
        vis2 = self.cross_attn_norm(vis2)
        vis = vis + self.dropout2(vis2)
        # FFN
        vis2 = self.norm3(vis)
        vis2 = self.ffn(vis2)
        vis = vis + self.dropout3(vis2)
        return vis

class Text_Projector(nn.Module):
    def __init__(self, args, in_channels=[512, 1024, 1024],

                 out_channels=[256, 512, 1024]):

        super(Text_Projector, self).__init__()

        self.proj = linear_layer(args, in_channels[2], out_channels[2])
        self.ReLU = nn.ReLU(True)

    def forward(self, text):

        text = self.ReLU(text + self.proj(text))

        return text

class Image_Projector(nn.Module):
    def __init__(self, args, in_channels=[512, 1024, 1024],

                 out_channels=[256, 512, 1024]):

        super(Image_Projector, self).__init__()

        self.proj = linear_layer(args, in_channels[0], out_channels[2])
        self.ReLU = nn.ReLU(True)

    def forward(self, image):

        image = self.ReLU(image + self.proj(image))

        return image

class Adapter(nn.Module):
    def __init__(self, c_in, reduction=4):
        super(Adapter, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(c_in, c_in // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(c_in // reduction, c_in, bias=False),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        x = self.fc(x)
        return x

class GAP(nn.Module):
    def __init__(self, kernel):
        super(GAP, self).__init__()
        self.k = kernel
        # self.fc = nn.Linear(512, 1024)
    def forward(self, x):
        x = F.adaptive_avg_pool2d(x, self.k)

        return x.squeeze(-1).squeeze(-1)

class AdaptiveSpatialFeatureFusion(nn.Module):
    def __init__(self, args, in_channels=[512, 1024, 1024],

                 out_channels=[256, 512, 1024]):

        super(AdaptiveSpatialFeatureFusion, self).__init__()
        self.weight = nn.LayerNorm(out_channels[2])
        self.proj = linear_layer(args, in_channels[0], out_channels[2])

    def forward(self, feature_map1, feature_map2):
        # feature_map1 : b, 1024, 1, 1
        # feature_map2 : b, 512, 1, 1
        feature_map2 = self.proj(feature_map2.squeeze(-1).squeeze(-1))
        feature_map1 = feature_map1.squeeze(-1).squeeze(-1)
        weights1 = torch.norm(feature_map1, dim=1).unsqueeze(-1)
        weights2 = torch.norm(feature_map2, dim=1).unsqueeze(-1)
        weights1 = weights1 / (weights1 + weights2)
        weights2 = 1 - weights1

        fused_feature_map = weights1 * feature_map1 + weights2 * feature_map2
        # b, 1024
        return fused_feature_map

class ModifiedAttentionPool2d(nn.Module):
    def __init__(self,

                 spacial_dim: int,

                 embed_dim: int,

                 num_heads: int,

                 output_dim: int = None):
        super().__init__()
        self.spacial_dim = spacial_dim
        self.positional_embedding = nn.Parameter(
            torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads
        # residual
        self.connect = nn.Sequential(
            nn.Conv2d(embed_dim, output_dim, 1, stride=1, bias=False),
            nn.BatchNorm2d(output_dim))

    def resize_pos_embed(self, pos_embed, input_shpae):
        """Resize pos_embed weights.

        Resize pos_embed using bicubic interpolate method.

        Args:

            pos_embed (torch.Tensor): Position embedding weights.

            input_shpae (tuple): Tuple for (downsampled input image height,

                downsampled input image width).

            pos_shape (tuple): The resolution of downsampled origin training

                image.

            mode (str): Algorithm used for upsampling:

                ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |

                ``'trilinear'``. Default: ``'nearest'``

        Return:

            torch.Tensor: The resized pos_embed of shape [B, C, L_new]

        """
        assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
        pos_h = pos_w = self.spacial_dim
        cls_token_weight = pos_embed[:, 0]
        pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
        pos_embed_weight = pos_embed_weight.reshape(
            1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
        pos_embed_weight = F.interpolate(pos_embed_weight,
                                         size=input_shpae,
                                         align_corners=False,
                                         mode='bicubic')
        cls_token_weight = cls_token_weight.unsqueeze(1)
        pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
        # pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
        return pos_embed_weight.transpose(-2, -1)

    def forward(self, x):
        B, C, H, W = x.size()
        res = self.connect(x)
        x = x.reshape(B, C, -1)  # NC(HW)
        # x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)  # NC(1+HW)
        pos_embed = self.positional_embedding.unsqueeze(0)
        pos_embed = self.resize_pos_embed(pos_embed, (H, W))  # NC(HW)
        x = x + pos_embed.to(x.dtype)  # NC(HW)
        x = x.permute(2, 0, 1)  # (HW)NC
        x, _ = F.multi_head_attention_forward(
            query=x,
            key=x,
            value=x,
            embed_dim_to_check=x.shape[-1],
            num_heads=self.num_heads,
            q_proj_weight=self.q_proj.weight,
            k_proj_weight=self.k_proj.weight,
            v_proj_weight=self.v_proj.weight,
            in_proj_weight=None,
            in_proj_bias=torch.cat(
                [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
            bias_k=None,
            bias_v=None,
            add_zero_attn=False,
            dropout_p=0,
            out_proj_weight=self.c_proj.weight,
            out_proj_bias=self.c_proj.bias,
            use_separate_proj_weight=True,
            training=self.training,
            need_weights=False)
        xt = x[0]
        x = x.permute(1, 2, 0).reshape(B, -1, H, W)
        x = x + res
        x = F.relu(x, True)

        return x, xt

# modified
class FPN(nn.Module):
    def __init__(self, args,

                 in_channels=[512, 1024, 1024],

                 out_channels=[256, 512, 1024, 1024]):
        super(FPN, self).__init__()
        input_resolution = args.input_size
        heads = args.heads
        output_dim = args.output_dim
        embed_dim = args.emb_dim
        # image projection
        self.attn = ModifiedAttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
        # text projection
        self.txt_proj = linear_layer(args, in_channels[2], out_channels[2])
        # fusion 1: v5 & seq -> f_5: b, 1024, 13, 13
        self.f1_v_proj = conv_layer(in_channels[2], out_channels[2], 1, 0)

        self.norm_layer = nn.Sequential(nn.BatchNorm2d(out_channels[2]),
                                        nn.ReLU(True))

        # fusion 2: v4 & fm -> f_4: b, 512, 26, 26
        self.f2_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
        self.f2_cat = conv_layer(out_channels[2] + out_channels[1],
                                 out_channels[1], 1, 0)
        # fusion 3: v3 & fm_mid -> f_3: b, 512, 52, 52
        self.f3_v_proj = conv_layer(in_channels[0], out_channels[0], 3, 1)
        self.f3_cat = conv_layer(out_channels[0] + out_channels[1],
                                 out_channels[1], 1, 0)
        # fusion 4: f_3 & f_4 & f_5 -> fq: b, 256, 26, 26
        self.f4_proj5 = conv_layer(out_channels[2], out_channels[1], 3, 1)
        self.f4_proj4 = conv_layer(out_channels[1], out_channels[1], 3, 1)
        self.f4_proj3 = conv_layer(out_channels[1], out_channels[1], 3, 1)
        # aggregation
        self.aggr = conv_layer(3 * out_channels[1], out_channels[1], 1, 0)
        self.coordconv = nn.Sequential(
            CoordConv(out_channels[1], out_channels[1], 3, 1),
            conv_layer(out_channels[1], out_channels[3], 3, 1))

    def forward(self, imgs, text):
        # v3, v4, v5: 256, 52, 52 / 512, 26, 26 / 1024, 13, 13
        v3, v4, v5 = imgs

        # fusion 1: b, 1024, 13, 13
        # text projection: b, 1024 -> b, 1024
        v5, _ = self.attn(v5)
        text_ = self.txt_proj(text)
        state = text_.unsqueeze(-1).unsqueeze(
            -1)# b, 1024, 1, 1

        f5 = self.f1_v_proj(v5) # b, 1024, 7, 7

        f5 = self.norm_layer(f5 * state)
        # fusion 2: b, 512, 26, 26
        f4 = self.f2_v_proj(v4)
        # f4 = f4.repeat(w2,1,1,1)

        f5_ = F.interpolate(f5, scale_factor=2, mode='bilinear')
        f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
        # fusion 3: b, 256, 26, 26
        f3 = self.f3_v_proj(v3)
        f3 = F.avg_pool2d(f3, 2, 2)
        # f3 = f3.repeat(w2, 1, 1, 1)

        f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
        # fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
        fq5 = self.f4_proj5(f5)
        fq4 = self.f4_proj4(f4)
        fq3 = self.f4_proj3(f3)
        # query
        fq5 = F.interpolate(fq5, scale_factor=2, mode='bilinear')
        fq = torch.cat([fq3, fq4, fq5], dim=1)
        fq = self.aggr(fq)
        fq = self.coordconv(fq)
            # fqq = fq.reshape(w1, w2, fq.shape[1], fq.shape[2], fq.shape[3])
            # b, 512, 26, 26

        # elif text.shape[0] != v3.shape[0]:
        #
        #     text = self.txt_proj(text)
        #     state = text.unsqueeze(-1).unsqueeze(
        #         -1)  # b, 1024, 1, 1
        #     state = state.view(v5.shape[0], int(text.shape[0] / v5.shape[0]), state.shape[1], state.shape[2], state.shape[3])
        #
        #     f5 = self.f1_v_proj(v5)  # b, 1024, 7, 7
        #     f5 = f5.unsqueeze(1)
        #     f5_ = f5 * state
        #     f5_ = f5_.view(-1, f5.shape[2], f5.shape[3], f5.shape[4])
        #     f5 = self.norm_layer(f5_)
        #     # fusion 2: b, 512, 26, 26
        #     f4 = self.f2_v_proj(v4)
        #     # f4 = f4.repeat(w2,1,1,1)
        #
        #     f5_ = F.interpolate(f5, scale_factor=2, mode='bilinear')
        #     f4 = f4.repeat(int(f5_.shape[0] / f4.shape[0]), 1, 1, 1)
        #     f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
        #
        #     # fusion 3: b, 256, 26, 26
        #     f3 = self.f3_v_proj(v3)
        #     f3 = F.avg_pool2d(f3, 2, 2)
        #     # f3 = f3.repeat(w2, 1, 1, 1)
        #     f3 = f3.repeat(int(f5_.shape[0] / f3.shape[0]), 1, 1, 1)
        #     f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
        #     # fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
        #     fq5 = self.f4_proj5(f5)
        #     fq4 = self.f4_proj4(f4)
        #     fq3 = self.f4_proj3(f3)
        #     # query
        #     fq5 = F.interpolate(fq5, scale_factor=2, mode='bilinear')
        #     fq = torch.cat([fq3, fq4, fq5], dim=1)
        #     fq = self.aggr(fq)
        #     fq = self.coordconv(fq)
        return fq

class ViTFPN(nn.Module):
    def __init__(self, image_resolution,

                 in_channels=[512, 768, 768],

                 out_channels=[768, 768, 768, 512]):
        super(ViTFPN, self).__init__()
        # text projection
        self.txt_proj = linear_layer(in_channels[0], out_channels[1])
        # fusion 1: v5 & seq -> f_5: b, 1024, 13, 13
        self.f1_v_proj = conv_layer(in_channels[1], out_channels[1], 1, 0)
        self.norm_layer = nn.Sequential(nn.BatchNorm2d(out_channels[1]),
                                        nn.ReLU(True))
        # fusion 2: v4 & fm -> f_4: b, 512, 26, 26
        self.f2_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
        self.f2_cat = conv_layer(out_channels[0] + out_channels[0],
                                 out_channels[0], 1, 0)
        # fusion 3: v3 & fm_mid -> f_3: b, 512, 52, 52
        self.f3_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
        self.f3_cat = conv_layer(out_channels[0] + out_channels[1],
                                 out_channels[1], 1, 0)
        # fusion 4: f_3 & f_4 & f_5 -> fq: b, 256, 26, 26
        self.f4_proj5 = conv_layer(out_channels[1], out_channels[0], 3, 1)
        self.f4_proj4 = conv_layer(out_channels[0], out_channels[0], 3, 1)
        self.f4_proj3 = conv_layer(out_channels[1], out_channels[1], 3, 1)
        # aggregation
        self.aggr = conv_layer(3 * out_channels[0], out_channels[0], 1, 0)
        self.coordconv = nn.Sequential(
            CoordConv(out_channels[0], out_channels[0], 3, 1),
            conv_layer(out_channels[0], out_channels[-1], 3, 1))

        self.attnpool = AttentionPool2d(image_resolution // 32, out_channels[-1],
                                    8, out_channels[-1])
    def forward(self, imgs, state, vis):
        # v1 / v2 / b, 49, 1024/ b, 196, 512
        v3, v4, v5 = imgs
        # fusion 1: b, 1024, 13, 13
        # text projection: b, 1024 -> b, 1024
        state = self.txt_proj(state)
        state = state.unsqueeze(-1).unsqueeze(
            -1)# b, 1024, 1, 1
        f5 = self.f1_v_proj(v5)
        f5 = self.norm_layer(f5 * state)
        # fusion 2: b, 512, 26, 26
        f4 = self.f2_v_proj(v4)
        b, c, h, w = f4.size()
        f5_ = F.interpolate(f5, (h, w), mode='bilinear')
        f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))

        # fusion 3: b, 256, 26, 26
        f3 = self.f3_v_proj(v3)
        f3 = F.avg_pool2d(f3, 2, 2)
        # f3 = f3.repeat(w2, 1, 1, 1)

        f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
        # fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
        fq5 = self.f4_proj5(f5)
        fq4 = self.f4_proj4(f4)
        fq3 = self.f4_proj3(f3)
        # query
        fq5 = F.interpolate(fq5, (h, w), mode='bilinear')
        fq = torch.cat([fq3, fq4, fq5], dim=1)
        fq = self.aggr(fq)
        if not vis:
            fq = self.coordconv(fq)
            fq = self.attnpool(fq)
        # b, 512, 26, 26
        return fq