Spaces:
Sleeping
Sleeping
File size: 26,291 Bytes
bb6012a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
# import open_clip
def conv_layer(in_dim, out_dim, kernel_size=1, padding=0, stride=1):
return nn.Sequential(
nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
nn.BatchNorm2d(out_dim), nn.ReLU(True))
# return nn.Sequential(
# nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
# nn.LayerNorm(out_dim), nn.ReLU(True))
# def conv_layer_1(in_dim, out_dim, kernel_size=1, padding=0, stride=1):
# return nn.Sequential(
# nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
# nn.LayerNorm(out_dim), nn.ReLU(True))
def linear_layer(in_dim, out_dim,bias=False):
return nn.Sequential(nn.Linear(in_dim, out_dim, bias),
nn.BatchNorm1d(out_dim), nn.ReLU(True))
# return nn.Sequential(nn.Linear(in_dim, out_dim, bias),
# nn.LayerNorm(out_dim), nn.ReLU(True))
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(
query=x[:1], key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
return x.squeeze(0)
# class AttentionPool2d(nn.Module):
# def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
# super().__init__()
# self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
# self.k_proj = nn.Linear(embed_dim, embed_dim)
# self.q_proj = nn.Linear(embed_dim, embed_dim)
# self.v_proj = nn.Linear(embed_dim, embed_dim)
# self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
# self.num_heads = num_heads
#
# def forward(self, x):
# x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
# x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
# x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
# x, _ = F.multi_head_attention_forward(
# query=x, key=x, value=x,
# embed_dim_to_check=x.shape[-1],
# num_heads=self.num_heads,
# q_proj_weight=self.q_proj.weight,
# k_proj_weight=self.k_proj.weight,
# v_proj_weight=self.v_proj.weight,
# in_proj_weight=None,
# in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
# bias_k=None,
# bias_v=None,
# add_zero_attn=False,
# dropout_p=0,
# out_proj_weight=self.c_proj.weight,
# out_proj_bias=self.c_proj.bias,
# use_separate_proj_weight=True,
# training=self.training,
# need_weights=False
# )
#
# return x[0]
class CoordConv(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
padding=1,
stride=1):
super().__init__()
self.conv1 = conv_layer(in_channels + 2, out_channels, kernel_size,
padding, stride)
def add_coord(self, input):
b, _, h, w = input.size()
x_range = torch.linspace(-1, 1, w, device=input.device)
y_range = torch.linspace(-1, 1, h, device=input.device)
y, x = torch.meshgrid(y_range, x_range)
y = y.expand([b, 1, -1, -1])
x = x.expand([b, 1, -1, -1])
coord_feat = torch.cat([x, y], 1)
input = torch.cat([input, coord_feat], 1)
return input
def forward(self, x):
x = self.add_coord(x)
x = self.conv1(x)
return x
class TransformerDecoder(nn.Module):
def __init__(self,
num_layers,
d_model,
nhead,
dim_ffn,
dropout,
return_intermediate=False):
super().__init__()
self.layers = nn.ModuleList([
TransformerDecoderLayer(d_model=d_model,
nhead=nhead,
dim_feedforward=dim_ffn,
dropout=dropout) for _ in range(num_layers)
])
self.num_layers = num_layers
self.norm = nn.LayerNorm(d_model)
self.return_intermediate = return_intermediate
@staticmethod
def pos1d(d_model, length):
"""
:param d_model: dimension of the model
:param length: length of positions
:return: length*d_model position matrix
"""
if d_model % 2 != 0:
raise ValueError("Cannot use sin/cos positional encoding with "
"odd dim (got dim={:d})".format(d_model))
pe = torch.zeros(length, d_model)
position = torch.arange(0, length).unsqueeze(1)
div_term = torch.exp((torch.arange(0, d_model, 2, dtype=torch.float) *
-(math.log(10000.0) / d_model)))
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
return pe.unsqueeze(1) # n, 1, 512
@staticmethod
def pos2d(d_model, height, width):
"""
:param d_model: dimension of the model
:param height: height of the positions
:param width: width of the positions
:return: d_model*height*width position matrix
"""
if d_model % 4 != 0:
raise ValueError("Cannot use sin/cos positional encoding with "
"odd dimension (got dim={:d})".format(d_model))
pe = torch.zeros(d_model, height, width)
# Each dimension use half of d_model
d_model = int(d_model / 2)
div_term = torch.exp(
torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
pos_w = torch.arange(0., width).unsqueeze(1)
pos_h = torch.arange(0., height).unsqueeze(1)
pe[0:d_model:2, :, :] = torch.sin(pos_w * div_term).transpose(
0, 1).unsqueeze(1).repeat(1, height, 1)
pe[1:d_model:2, :, :] = torch.cos(pos_w * div_term).transpose(
0, 1).unsqueeze(1).repeat(1, height, 1)
pe[d_model::2, :, :] = torch.sin(pos_h * div_term).transpose(
0, 1).unsqueeze(2).repeat(1, 1, width)
pe[d_model + 1::2, :, :] = torch.cos(pos_h * div_term).transpose(
0, 1).unsqueeze(2).repeat(1, 1, width)
return pe.reshape(-1, 1, height * width).permute(2, 1, 0) # hw, 1, 512
def forward(self, vis, txt, pad_mask):
'''
vis: b, 512, h, w
txt: b, L, 512
pad_mask: b, L
'''
B, C, H, W = vis.size()
_, L, D = txt.size()
# position encoding
vis_pos = self.pos2d(C, H, W)
txt_pos = self.pos1d(D, L)
# reshape & permute
vis = vis.reshape(B, C, -1).permute(2, 0, 1)
txt = txt.permute(1, 0, 2)
# forward
output = vis
intermediate = []
for layer in self.layers:
output = layer(output, txt, vis_pos, txt_pos, pad_mask)
if self.return_intermediate:
# HW, b, 512 -> b, 512, HW
intermediate.append(self.norm(output).permute(1, 2, 0))
if self.norm is not None:
# HW, b, 512 -> b, 512, HW
output = self.norm(output).permute(1, 2, 0)
if self.return_intermediate:
intermediate.pop()
intermediate.append(output)
# [output1, output2, ..., output_n]
return intermediate
else:
# b, 512, HW
return output
return output
class TransformerDecoderLayer(nn.Module):
def __init__(self,
d_model=512,
nhead=9,
dim_feedforward=2048,
dropout=0.1):
super().__init__()
# Normalization Layer
self.self_attn_norm = nn.LayerNorm(d_model)
self.cross_attn_norm = nn.LayerNorm(d_model)
# Attention Layer
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model,
nhead,
dropout=dropout,
kdim=d_model,
vdim=d_model)
# FFN
self.ffn = nn.Sequential(nn.Linear(d_model, dim_feedforward),
nn.ReLU(True), nn.Dropout(dropout),
nn.LayerNorm(dim_feedforward),
nn.Linear(dim_feedforward, d_model))
# LayerNorm & Dropout
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos.to(tensor.device)
def forward(self, vis, txt, vis_pos, txt_pos, pad_mask):
'''
vis: 26*26, b, 512
txt: L, b, 512
vis_pos: 26*26, 1, 512
txt_pos: L, 1, 512
pad_mask: b, L
'''
# Self-Attention
vis2 = self.norm1(vis)
q = k = self.with_pos_embed(vis2, vis_pos)
vis2 = self.self_attn(q, k, value=vis2)[0]
vis2 = self.self_attn_norm(vis2)
vis = vis + self.dropout1(vis2)
# Cross-Attention
vis2 = self.norm2(vis)
vis2 = self.multihead_attn(query=self.with_pos_embed(vis2, vis_pos),
key=self.with_pos_embed(txt, txt_pos),
value=txt,
key_padding_mask=pad_mask)[0]
vis2 = self.cross_attn_norm(vis2)
vis = vis + self.dropout2(vis2)
# FFN
vis2 = self.norm3(vis)
vis2 = self.ffn(vis2)
vis = vis + self.dropout3(vis2)
return vis
class Text_Projector(nn.Module):
def __init__(self, args, in_channels=[512, 1024, 1024],
out_channels=[256, 512, 1024]):
super(Text_Projector, self).__init__()
self.proj = linear_layer(args, in_channels[2], out_channels[2])
self.ReLU = nn.ReLU(True)
def forward(self, text):
text = self.ReLU(text + self.proj(text))
return text
class Image_Projector(nn.Module):
def __init__(self, args, in_channels=[512, 1024, 1024],
out_channels=[256, 512, 1024]):
super(Image_Projector, self).__init__()
self.proj = linear_layer(args, in_channels[0], out_channels[2])
self.ReLU = nn.ReLU(True)
def forward(self, image):
image = self.ReLU(image + self.proj(image))
return image
class Adapter(nn.Module):
def __init__(self, c_in, reduction=4):
super(Adapter, self).__init__()
self.fc = nn.Sequential(
nn.Linear(c_in, c_in // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(c_in // reduction, c_in, bias=False),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.fc(x)
return x
class GAP(nn.Module):
def __init__(self, kernel):
super(GAP, self).__init__()
self.k = kernel
# self.fc = nn.Linear(512, 1024)
def forward(self, x):
x = F.adaptive_avg_pool2d(x, self.k)
return x.squeeze(-1).squeeze(-1)
class AdaptiveSpatialFeatureFusion(nn.Module):
def __init__(self, args, in_channels=[512, 1024, 1024],
out_channels=[256, 512, 1024]):
super(AdaptiveSpatialFeatureFusion, self).__init__()
self.weight = nn.LayerNorm(out_channels[2])
self.proj = linear_layer(args, in_channels[0], out_channels[2])
def forward(self, feature_map1, feature_map2):
# feature_map1 : b, 1024, 1, 1
# feature_map2 : b, 512, 1, 1
feature_map2 = self.proj(feature_map2.squeeze(-1).squeeze(-1))
feature_map1 = feature_map1.squeeze(-1).squeeze(-1)
weights1 = torch.norm(feature_map1, dim=1).unsqueeze(-1)
weights2 = torch.norm(feature_map2, dim=1).unsqueeze(-1)
weights1 = weights1 / (weights1 + weights2)
weights2 = 1 - weights1
fused_feature_map = weights1 * feature_map1 + weights2 * feature_map2
# b, 1024
return fused_feature_map
class ModifiedAttentionPool2d(nn.Module):
def __init__(self,
spacial_dim: int,
embed_dim: int,
num_heads: int,
output_dim: int = None):
super().__init__()
self.spacial_dim = spacial_dim
self.positional_embedding = nn.Parameter(
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
# residual
self.connect = nn.Sequential(
nn.Conv2d(embed_dim, output_dim, 1, stride=1, bias=False),
nn.BatchNorm2d(output_dim))
def resize_pos_embed(self, pos_embed, input_shpae):
"""Resize pos_embed weights.
Resize pos_embed using bicubic interpolate method.
Args:
pos_embed (torch.Tensor): Position embedding weights.
input_shpae (tuple): Tuple for (downsampled input image height,
downsampled input image width).
pos_shape (tuple): The resolution of downsampled origin training
image.
mode (str): Algorithm used for upsampling:
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
``'trilinear'``. Default: ``'nearest'``
Return:
torch.Tensor: The resized pos_embed of shape [B, C, L_new]
"""
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
pos_h = pos_w = self.spacial_dim
cls_token_weight = pos_embed[:, 0]
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
pos_embed_weight = pos_embed_weight.reshape(
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
pos_embed_weight = F.interpolate(pos_embed_weight,
size=input_shpae,
align_corners=False,
mode='bicubic')
cls_token_weight = cls_token_weight.unsqueeze(1)
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
# pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
return pos_embed_weight.transpose(-2, -1)
def forward(self, x):
B, C, H, W = x.size()
res = self.connect(x)
x = x.reshape(B, C, -1) # NC(HW)
# x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(1+HW)
pos_embed = self.positional_embedding.unsqueeze(0)
pos_embed = self.resize_pos_embed(pos_embed, (H, W)) # NC(HW)
x = x + pos_embed.to(x.dtype) # NC(HW)
x = x.permute(2, 0, 1) # (HW)NC
x, _ = F.multi_head_attention_forward(
query=x,
key=x,
value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat(
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False)
xt = x[0]
x = x.permute(1, 2, 0).reshape(B, -1, H, W)
x = x + res
x = F.relu(x, True)
return x, xt
# modified
class FPN(nn.Module):
def __init__(self, args,
in_channels=[512, 1024, 1024],
out_channels=[256, 512, 1024, 1024]):
super(FPN, self).__init__()
input_resolution = args.input_size
heads = args.heads
output_dim = args.output_dim
embed_dim = args.emb_dim
# image projection
self.attn = ModifiedAttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
# text projection
self.txt_proj = linear_layer(args, in_channels[2], out_channels[2])
# fusion 1: v5 & seq -> f_5: b, 1024, 13, 13
self.f1_v_proj = conv_layer(in_channels[2], out_channels[2], 1, 0)
self.norm_layer = nn.Sequential(nn.BatchNorm2d(out_channels[2]),
nn.ReLU(True))
# fusion 2: v4 & fm -> f_4: b, 512, 26, 26
self.f2_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
self.f2_cat = conv_layer(out_channels[2] + out_channels[1],
out_channels[1], 1, 0)
# fusion 3: v3 & fm_mid -> f_3: b, 512, 52, 52
self.f3_v_proj = conv_layer(in_channels[0], out_channels[0], 3, 1)
self.f3_cat = conv_layer(out_channels[0] + out_channels[1],
out_channels[1], 1, 0)
# fusion 4: f_3 & f_4 & f_5 -> fq: b, 256, 26, 26
self.f4_proj5 = conv_layer(out_channels[2], out_channels[1], 3, 1)
self.f4_proj4 = conv_layer(out_channels[1], out_channels[1], 3, 1)
self.f4_proj3 = conv_layer(out_channels[1], out_channels[1], 3, 1)
# aggregation
self.aggr = conv_layer(3 * out_channels[1], out_channels[1], 1, 0)
self.coordconv = nn.Sequential(
CoordConv(out_channels[1], out_channels[1], 3, 1),
conv_layer(out_channels[1], out_channels[3], 3, 1))
def forward(self, imgs, text):
# v3, v4, v5: 256, 52, 52 / 512, 26, 26 / 1024, 13, 13
v3, v4, v5 = imgs
# fusion 1: b, 1024, 13, 13
# text projection: b, 1024 -> b, 1024
v5, _ = self.attn(v5)
text_ = self.txt_proj(text)
state = text_.unsqueeze(-1).unsqueeze(
-1)# b, 1024, 1, 1
f5 = self.f1_v_proj(v5) # b, 1024, 7, 7
f5 = self.norm_layer(f5 * state)
# fusion 2: b, 512, 26, 26
f4 = self.f2_v_proj(v4)
# f4 = f4.repeat(w2,1,1,1)
f5_ = F.interpolate(f5, scale_factor=2, mode='bilinear')
f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
# fusion 3: b, 256, 26, 26
f3 = self.f3_v_proj(v3)
f3 = F.avg_pool2d(f3, 2, 2)
# f3 = f3.repeat(w2, 1, 1, 1)
f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
# fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
fq5 = self.f4_proj5(f5)
fq4 = self.f4_proj4(f4)
fq3 = self.f4_proj3(f3)
# query
fq5 = F.interpolate(fq5, scale_factor=2, mode='bilinear')
fq = torch.cat([fq3, fq4, fq5], dim=1)
fq = self.aggr(fq)
fq = self.coordconv(fq)
# fqq = fq.reshape(w1, w2, fq.shape[1], fq.shape[2], fq.shape[3])
# b, 512, 26, 26
# elif text.shape[0] != v3.shape[0]:
#
# text = self.txt_proj(text)
# state = text.unsqueeze(-1).unsqueeze(
# -1) # b, 1024, 1, 1
# state = state.view(v5.shape[0], int(text.shape[0] / v5.shape[0]), state.shape[1], state.shape[2], state.shape[3])
#
# f5 = self.f1_v_proj(v5) # b, 1024, 7, 7
# f5 = f5.unsqueeze(1)
# f5_ = f5 * state
# f5_ = f5_.view(-1, f5.shape[2], f5.shape[3], f5.shape[4])
# f5 = self.norm_layer(f5_)
# # fusion 2: b, 512, 26, 26
# f4 = self.f2_v_proj(v4)
# # f4 = f4.repeat(w2,1,1,1)
#
# f5_ = F.interpolate(f5, scale_factor=2, mode='bilinear')
# f4 = f4.repeat(int(f5_.shape[0] / f4.shape[0]), 1, 1, 1)
# f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
#
# # fusion 3: b, 256, 26, 26
# f3 = self.f3_v_proj(v3)
# f3 = F.avg_pool2d(f3, 2, 2)
# # f3 = f3.repeat(w2, 1, 1, 1)
# f3 = f3.repeat(int(f5_.shape[0] / f3.shape[0]), 1, 1, 1)
# f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
# # fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
# fq5 = self.f4_proj5(f5)
# fq4 = self.f4_proj4(f4)
# fq3 = self.f4_proj3(f3)
# # query
# fq5 = F.interpolate(fq5, scale_factor=2, mode='bilinear')
# fq = torch.cat([fq3, fq4, fq5], dim=1)
# fq = self.aggr(fq)
# fq = self.coordconv(fq)
return fq
class ViTFPN(nn.Module):
def __init__(self, image_resolution,
in_channels=[512, 768, 768],
out_channels=[768, 768, 768, 512]):
super(ViTFPN, self).__init__()
# text projection
self.txt_proj = linear_layer(in_channels[0], out_channels[1])
# fusion 1: v5 & seq -> f_5: b, 1024, 13, 13
self.f1_v_proj = conv_layer(in_channels[1], out_channels[1], 1, 0)
self.norm_layer = nn.Sequential(nn.BatchNorm2d(out_channels[1]),
nn.ReLU(True))
# fusion 2: v4 & fm -> f_4: b, 512, 26, 26
self.f2_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
self.f2_cat = conv_layer(out_channels[0] + out_channels[0],
out_channels[0], 1, 0)
# fusion 3: v3 & fm_mid -> f_3: b, 512, 52, 52
self.f3_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
self.f3_cat = conv_layer(out_channels[0] + out_channels[1],
out_channels[1], 1, 0)
# fusion 4: f_3 & f_4 & f_5 -> fq: b, 256, 26, 26
self.f4_proj5 = conv_layer(out_channels[1], out_channels[0], 3, 1)
self.f4_proj4 = conv_layer(out_channels[0], out_channels[0], 3, 1)
self.f4_proj3 = conv_layer(out_channels[1], out_channels[1], 3, 1)
# aggregation
self.aggr = conv_layer(3 * out_channels[0], out_channels[0], 1, 0)
self.coordconv = nn.Sequential(
CoordConv(out_channels[0], out_channels[0], 3, 1),
conv_layer(out_channels[0], out_channels[-1], 3, 1))
self.attnpool = AttentionPool2d(image_resolution // 32, out_channels[-1],
8, out_channels[-1])
def forward(self, imgs, state, vis):
# v1 / v2 / b, 49, 1024/ b, 196, 512
v3, v4, v5 = imgs
# fusion 1: b, 1024, 13, 13
# text projection: b, 1024 -> b, 1024
state = self.txt_proj(state)
state = state.unsqueeze(-1).unsqueeze(
-1)# b, 1024, 1, 1
f5 = self.f1_v_proj(v5)
f5 = self.norm_layer(f5 * state)
# fusion 2: b, 512, 26, 26
f4 = self.f2_v_proj(v4)
b, c, h, w = f4.size()
f5_ = F.interpolate(f5, (h, w), mode='bilinear')
f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
# fusion 3: b, 256, 26, 26
f3 = self.f3_v_proj(v3)
f3 = F.avg_pool2d(f3, 2, 2)
# f3 = f3.repeat(w2, 1, 1, 1)
f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
# fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
fq5 = self.f4_proj5(f5)
fq4 = self.f4_proj4(f4)
fq3 = self.f4_proj3(f3)
# query
fq5 = F.interpolate(fq5, (h, w), mode='bilinear')
fq = torch.cat([fq3, fq4, fq5], dim=1)
fq = self.aggr(fq)
if not vis:
fq = self.coordconv(fq)
fq = self.attnpool(fq)
# b, 512, 26, 26
return fq
|