Spaces:
Sleeping
Sleeping
File size: 14,634 Bytes
bb6012a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import os
import random
import numpy as np
from PIL import Image
from loguru import logger
import sys
import inspect
import math
import torch
import torch.distributed as dist
from collections import OrderedDict
from torch import nn
def init_random_seed(seed=None, device='cuda', rank=0, world_size=1):
"""Initialize random seed."""
if seed is not None:
return seed
# Make sure all ranks share the same random seed to prevent
# some potential bugs. Please refer to
# https://github.com/open-mmlab/mmdetection/issues/6339
seed = np.random.randint(2**31)
if world_size == 1:
return seed
if rank == 0:
random_num = torch.tensor(seed, dtype=torch.int32, device=device)
else:
random_num = torch.tensor(0, dtype=torch.int32, device=device)
dist.broadcast(random_num, src=0)
return random_num.item()
def set_random_seed(seed, deterministic=False):
"""Set random seed."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def worker_init_fn(worker_id, num_workers, rank, seed):
# The seed of each worker equals to
# num_worker * rank + worker_id + user_seed
worker_seed = num_workers * rank + worker_id + seed
np.random.seed(worker_seed)
random.seed(worker_seed)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":f"):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
if self.name == "Lr":
fmtstr = "{name}={val" + self.fmt + "}"
else:
fmtstr = "{name}={val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
logger.info(" ".join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = "{:" + str(num_digits) + "d}"
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
def get_caller_name(depth=0):
"""
Args:
depth (int): Depth of caller conext, use 0 for caller depth.
Default value: 0.
Returns:
str: module name of the caller
"""
# the following logic is a little bit faster than inspect.stack() logic
frame = inspect.currentframe().f_back
for _ in range(depth):
frame = frame.f_back
return frame.f_globals["__name__"]
class StreamToLoguru:
"""
stream object that redirects writes to a logger instance.
"""
def __init__(self, level="INFO", caller_names=("apex", "pycocotools")):
"""
Args:
level(str): log level string of loguru. Default value: "INFO".
caller_names(tuple): caller names of redirected module.
Default value: (apex, pycocotools).
"""
self.level = level
self.linebuf = ""
self.caller_names = caller_names
def write(self, buf):
full_name = get_caller_name(depth=1)
module_name = full_name.rsplit(".", maxsplit=-1)[0]
if module_name in self.caller_names:
for line in buf.rstrip().splitlines():
# use caller level log
logger.opt(depth=2).log(self.level, line.rstrip())
else:
sys.__stdout__.write(buf)
def flush(self):
pass
def redirect_sys_output(log_level="INFO"):
redirect_logger = StreamToLoguru(log_level)
sys.stderr = redirect_logger
sys.stdout = redirect_logger
def setup_logger(save_dir, filename="log.txt", mode="a"):
"""setup logger for training and testing.
Args:
save_dir(str): location to save log file
distributed_rank(int): device rank when multi-gpu environment
filename (string): log save name.
mode(str): log file write mode, `append` or `override`. default is `a`.
Return:
logger instance.
"""
loguru_format = (
"<green>{time:YYYY-MM-DD HH:mm:ss}</green> | "
"<level>{level: <8}</level> | "
"<cyan>{name}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>")
logger.remove()
save_file = os.path.join(save_dir, filename)
if mode == "o" and os.path.exists(save_file):
os.remove(save_file)
# only keep logger in rank0 process
logger.add(
sys.stderr,
format=loguru_format,
level="INFO",
enqueue=True,
)
logger.add(save_file)
# redirect stdout/stderr to loguru
redirect_sys_output("INFO")
def trainMetric(pred, label):
pred = torch.argmax(pred,dim = 1)
prec = torch.sum(pred == label)
return prec
# def compute_AP(predicted_probs, true_labels):
# num_samples, num_classes = true_labels.shape
#
# # 初始化用于存储每个类别的 AP 的列表
# aps = []
#
# for class_idx in range(num_classes):
# class_true_labels = true_labels[:, class_idx]
# class_similarity_scores = predicted_probs[:, class_idx]
#
# # 获取按相似性分数排序后的样本索引
# sorted_indices = torch.argsort(class_similarity_scores, descending=True)
#
# # 计算累积精度和召回率
# tp = 0
# fp = 0
# precision_at_rank = []
# recall_at_rank = []
#
# for rank, idx in enumerate(sorted_indices):
# if class_true_labels[idx] == 1:
# tp += 1
# else:
# fp += 1
# precision = tp / (tp + fp)
# recall = tp / torch.sum(class_true_labels)
# precision_at_rank.append(precision)
# recall_at_rank.append(recall)
#
# # 计算平均精度(AP)通过计算曲线下的面积
# precision_at_rank = torch.tensor(precision_at_rank)
# recall_at_rank = torch.tensor(recall_at_rank)
# ap = torch.trapz(precision_at_rank, recall_at_rank)
#
# aps.append(ap)
#
#
# return aps
def token_wise_similarity(rep1, rep2, mask=None, chunk_size=1024):
batch_size1, n_token1, feat_dim = rep1.shape
batch_size2, n_token2, _ = rep2.shape
num_folds = math.ceil(batch_size2 / chunk_size)
output = []
for i in range(num_folds):
rep2_seg = rep2[i * chunk_size:(i + 1) * chunk_size]
out_i = rep1.reshape(-1, feat_dim) @ rep2_seg.reshape(-1, feat_dim).T
out_i = out_i.reshape(batch_size1, n_token1, -1, n_token2).max(3)[0]
if mask is None:
out_i = out_i.mean(1)
else:
out_i = out_i.sum(1)
output.append(out_i)
output = torch.cat(output, dim=1)
if mask is not None:
output = output / mask.sum(1, keepdim=True).clamp_(min=1)
return output
def compute_acc(logits, targets, topk=5):
targets = targets.squeeze(1)
p = logits.topk(topk, 1, True, True)[1]
pred = logits.topk(topk, 1, True, True)[1]
gt = targets[pred,:]
a = gt.view(1, -1)
# b = a.expand_as(pred)
c = gt.eq(targets)
correct = pred.eq(targets.view(1, -1).expand_as(pred)).contiguous()
acc_1 = correct[:1].sum(0)
acc_k = correct[:topk].sum(0)
return acc_1, acc_k
def compute_mAP(predicted_probs, true_labels):
aps = compute_AP(predicted_probs, true_labels)
aps = [ap for ap in aps if not torch.isnan(ap)]
mAP = torch.mean(torch.tensor(aps))
return mAP
def compute_F1(predictions, labels, k_val=5):
labels = labels.squeeze(1)
idx = predictions.topk(dim=1, k=k_val)[1]
predictions.fill_(0)
predictions.scatter_(dim=1, index=idx, src=torch.ones(predictions.size(0), k_val).to(predictions.device))
mask = predictions == 1
TP = (labels[mask] == 1).sum().float()
tpfp = mask.sum().float()
tpfn = (labels == 1).sum().float()
p = TP / tpfp
r = TP/tpfn
f1 = 2*p*r/(p+r)
return f1, p, r
def compute_AP(predictions, labels):
num_class = predictions.size(1)
ap = torch.zeros(num_class).to(predictions.device)
empty_class = 0
for idx_cls in range(num_class):
prediction = predictions[:, idx_cls]
label = labels[:, idx_cls]
mask = label.abs() == 1
if (label > 0).sum() == 0:
empty_class += 1
continue
binary_label = torch.clamp(label[mask], min=0, max=1)
sorted_pred, sort_idx = prediction[mask].sort(descending=True)
sorted_label = binary_label[sort_idx]
tmp = (sorted_label == 1).float()
tp = tmp.cumsum(0)
fp = (sorted_label != 1).float().cumsum(0)
num_pos = binary_label.sum()
rec = tp/num_pos
prec = tp/(tp+fp)
ap_cls = (tmp*prec).sum()/num_pos
ap[idx_cls].copy_(ap_cls)
return ap, empty_class
def compute_ACG(predictions, labels, k_val=5):
gt = labels.squeeze(1)
idx = predictions.topk(dim=1, k=k_val)[1]
pred = gt[idx, :]
pred[pred == -1] = 0
c = labels.eq(pred) # common label
r = c.sum(-1) # similarity level
# acg
acg = c.sum(-1).sum(-1) / k_val
lg = torch.log1p(torch.arange(1, k_val+1, 1) ).to(r.device)
# dcg
dcg = (torch.pow(2, r) - 1) / lg
ir, _ = r.sort(-1, descending=True)
idcg = (torch.pow(2, ir) - 1) / lg
idcg[idcg == 0] = 1e-6
ndcg = dcg.sum(-1) / idcg.sum(-1)
# map
pos = r.clone()
pos[pos != 0] = 1
j = torch.arange(1, k_val + 1, 1).to(pos.device)
P = torch.cumsum(pos, 1) / j
Npos = torch.sum(pos, 1)
Npos[Npos == 0] = 1
AP = torch.sum(P * pos, 1)
map = torch.sum(P * pos, 1) / Npos
# wmap
acgj = torch.cumsum(r, 1) / j
wmap = torch.sum(acgj * pos, 1) / Npos
return acg, ndcg, map, wmap
def compute_mAPw(predictions, labels, k_val=5):
gt = labels.squeeze(1)
idx = predictions.topk(dim=1, k=k_val)[1]
pred = gt[idx, :]
pred[pred == -1] = 0
c = labels.eq(pred)
r = c.sum(-1)
pos = r.clone()
pos[pos != 0] = 1
P = torch.cumsum(pos) / torch.arange(1, k_val+1, 1)
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate with half-cycle cosine after warmup"""
if epoch < args.warmup_epochs:
lr = args.base_lr * epoch / args.warmup_epochs
else:
lr = args.min_lr + (args.base_lr - args.min_lr) * 0.5 * \
(1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
for param_group in optimizer.param_groups:
if "lr_scale" in param_group:
param_group["lr"] = lr * param_group["lr_scale"]
else:
param_group["lr"] = lr
return lr
def load_ckpt(weight_dir, model, map_location, args):
checkpoint = torch.load(weight_dir, map_location=map_location)
if args.resume:
resume_epoch = checkpoint['epoch']
else:
resume_epoch = 0
pre_weight = checkpoint['state_dict']
new_pre_weight = OrderedDict()
# pre_weight =torch.jit.load(resume)
model_dict = model.state_dict()
new_model_dict = OrderedDict()
for k, v in pre_weight.items():
new_k = k.replace('module.', '') if 'module' in k else k
# 针对batch_size=1
# new_k = new_k.replace('1','2') if 'proj.1' in new_k else new_k
new_pre_weight[new_k] = v
# for k, v in model_dict.items():
# new_k = k.replace('module.', '') if 'module' in k else k
# new_model_dict[new_k] = v
pre_weight = new_pre_weight # ["model_state"]
# pretrained_dict = {}
# t_n = 0
# v_n = 0
# for k, v in pre_weight.items():
# t_n += 1
# if k in new_model_dict:
# k = 'module.' + k if 'module' not in k else k
# v_n += 1
# pretrained_dict[k] = v
# print(k)
# os._exit()
# print(f'{v_n}/{t_n} weights have been loaded!')
model_dict.update(pre_weight)
model.load_state_dict(model_dict, strict=False)
return model, resume_epoch
def load_ckpt_fpn(weight_dir, model, map_location):
pre_weight = torch.load(weight_dir, map_location=map_location)['state_dict']
epoch = torch.load(weight_dir, map_location=map_location)['epoch']
new_pre_weight = OrderedDict()
# pre_weight =torch.jit.load(resume)
model_dict = model.state_dict()
for k, v in pre_weight.items():
new_k = k.replace('module.', '') if 'module' in k else k
# if not (new_k.startswith('FPN') or new_k.startswith('gap')):
new_pre_weight[new_k] = v
pre_weight = new_pre_weight
# ["model_state"]
model_dict.update(pre_weight)
model.load_state_dict(model_dict, strict=True)
return model, epoch
def load_ckpt_old(weight_dir, model, map_location):
pre_weight = torch.load(weight_dir, map_location=map_location)['state_dict']
epoch = torch.load(weight_dir, map_location=map_location)['epoch']
new_pre_weight = OrderedDict()
# pre_weight =torch.jit.load(resume)
model_dict = model.state_dict()
for k, v in pre_weight.items():
new_k = k.replace('module.', '') if 'module' in k else k
if not (new_k.startswith('FPN') or new_k.startswith('gap')):
new_pre_weight[new_k] = v
pre_weight = new_pre_weight
# ["model_state"]
model_dict.update(pre_weight)
model.load_state_dict(model_dict, strict=False)
return model, epoch
def compare_ckpt(model1, model2):
V = dict()
for k, v in model1.items():
if k.startswith('projT'):
V[k] = v
for k, v in model2.items():
if k in sorted(V.keys()):
model2[k] = V[k]
return model2 |